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Abstract

The integration of multimodal Electronic Health
Records (EHR) data has significantly improved
clinical predictive capabilities. Leveraging clini-
cal notes and multivariate time-series EHR, exist-
ing models often lack the medical context relevent
to clinical tasks, prompting the incorporation of
external knowledge, particularly from the knowl-
edge graph (KG). Previous approaches with KG
knowledge have primarily focused on structured
knowledge extraction, neglecting unstructured data
modalities and semantic high dimensional medi-
cal knowledge. In response, we propose REALM,
a Retrieval-Augmented Generation (RAG) driven
framework to enhance multimodal EHR represen-
tations that address these limitations. Firstly, we
apply Large Language Model (LLM) to encode
long context clinical notes and GRU model to en-
code time-series EHR data. Secondly, we prompt
LLM to extract task-relevant medical entities and
match entities in professionally labeled external
knowledge graph (PrimeKG) with corresponding
medical knowledge. By matching and aligning
with clinical standards, our framework eliminates
hallucinations and ensures consistency. Lastly, we
propose an adaptive multimodal fusion network
to integrate extracted knowledge with multimodal
EHR data. Our extensive experiments on MIMIC-
III mortality and readmission tasks showcase the
superior performance of our REALM framework
over baselines, emphasizing the effectiveness of
each module. REALM framework contributes to
refining the use of multimodal EHR data in health-
care and bridging the gap with nuanced medical
context essential for informed clinical predictions.

∗ Equal contribution, † Corresponding author.

1 Introduction
The advent of Electronic Health Records (EHR) marks a piv-
otal advancement in the way patient data is gathered and an-
alyzed, contributing to a more effective and informed health-
care delivery system for clinical prediction Ma et al. [2023];
Gao et al. [2024]; Zhu et al. [2024c]; Zhang et al. [2024];
Liao et al. [2024]. This advancement is largely attributed
to the utilization of multimodal EHR data, which primar-
ily includes clinical notes and multivariate time-series data
from patient records Zhang et al. [2022]; Wang et al. [2024];
Zhang et al. [2023a]. Such data types are integral to health-
care prediction tasks, mirroring the holistic approach practi-
tioners adopt by leveraging various patient data points to in-
form their clinical decisions and treatment strategies, rather
than depending on a single data source Xu et al. [2023].
Deep learning-based methods have become the mainstream
approach, processing multimodal data to learn a mapping
from heterogeneous inputs to output labels Choi et al. [2017];
Ma et al. [2018]; Zhang et al. [2022]. However, in contrast
to healthcare professionals, who have a deep understanding
of medical contexts through extensive experience and knowl-
edge, neural networks trained from scratch lack these insights
into medical concepts Miotto et al. [2018]. Without deliber-
ate integration of external knowledge, these networks often
lack the ability or sensitivity to recognize crucial disease enti-
ties or laboratory test results within the EHR, essential for ac-
curate prediction tasks Zhu et al. [2024b]. In response, some
recent studies have begun incorporating knowledge graphs to
infuse additional medical insights into their analyses Ye et al.
[2021]; Gao et al. [2022]. These graphs offer a supplemen-
tary layer of clinically relevant concepts, thereby enhancing
the model’s ability to provide contextually meaningful rep-
resentations and interpretable evidence Yang et al. [2023].
Despite these advancements, formidable limitations remain,
underscoring the imperative need for continuous research in
integrating insights from knowledge graphs to refine and en-
hance the use of multimodal EHR data in healthcare.

Previous methods integrating external medical knowledge
into EHR data analysis have focused on mining hierarchi-
cal and structured knowledge from clinical-context knowl-
edge graphs. However, these approaches primarily extract
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medical concepts—entity names and their relationships into
a graph—with limited direct contribution to predictive tasks
(Limitation 1). Furthermore, they tend to extract entities
only from structured data modalities, such as ICD disease
codes, patient conditions, procedures, and drugs, neglect-
ing the unstructured modalities. Although extracting knowl-
edge from unstructured data is more challenging, both clin-
ical notes and time-series modalities are more common and
practical Rajkomar et al. [2018] (Limitation 2). With Large
Language Models (LLMs) like GPT-4 Achiam et al. [2023]
demonstrating strong capabilities in diverse clinical tasks Zhu
et al. [2024b]; Wornow et al. [2023] and serving as large med-
ical knowledge graphs (KGs) Sun et al. [2023], it is feasi-
ble to use LLM to bridge complex medical knowledge from
KGs with multimodal EHR data. By prompting the LLM,
GraphCare Jiang et al. [2023] constructs a GPT-KG on struc-
tured condition, procedure, and drug record data, with triples
(entity 1, relationship, entity 2) and further employs graph
neural networks for downstream tasks. This paradigm, how-
ever, faces the hallucination issue of LLMs, where incor-
rect or fabricated information may arise Zhang et al. [2023b]
(Limitation 3).

To overcome these limitations, we propose utilizing LLM
in a Retrieval-augmented Generation (RAG) approach Lewis
et al. [2020]. The RAG process links the unstructured modali-
ties and external KG with LLM’s semantic reasoning capabil-
ities Wang et al. [2023]. Despite its apparent simplicity, ap-
plying this intuition to clinical tasks presents technical chal-
lenges:

Challenge 1: How to extract entities from multimodal
EHR data and match these entities with external KG con-
sistently? Extracting entities from the diverse and complex
formats of EHR data (including clinical notes and multivari-
ate time-series data) presents a significant challenge. More-
over, unlike structured codes where it can directly compare
the code-related entities’ embedding with KG’s entity, the en-
tities extracted by LLM using prompts have hallucination is-
sues. Accurately matching extracted entities with those in an
external knowledge graph while eliminating the potential for
hallucinations posed by LLMs is crucial for maintaining the
integrity and reliability of the clinical prediction tasks Imrie
et al. [2023].

Challenge 2: How to encode and incorporate retrieved
knowledge with original data modalities? The extracted
textual knowledge should be encoded using a sentence-level
embedding model, thus posing a challenge in the selection of
long-context supported models Xiao et al. [2023]. Addition-
ally, effectively incorporating retrieved knowledge with the
original data modalities to enhance prediction accuracy with-
out compromising interpretability Ye et al. [2021] or intro-
ducing additional complexity into the model is vital as well.

To these ends, We propose REALM framework tackling
the above limitations and challenges with the following ap-
proaches, which are our three-fold contributions:

• We design the RAG-driven multimodal enhancement
framework for clinical notes and time-series EHR data
(Response to Limitation 1). REALM leverages the capa-
bilities of LLMs and professionally labeled external large

medical knowledge graphs. We retrieve the medical entities
by prompting LLM, match them in KG with detailed check-
ing and alignment to ensure no hallucination (Response to
Limitation 3). Apart from simple triples of entities, we
also include much more knowledge and their relationships
by extending the entities’ definition and description and en-
code the long context medical knowledge into LLM embed-
ding, which allows for capturing more complex semantic
medical background knowledge that contains task-relevant
insights (Response to Limitation 2).

• Methodologically, our RAG-driven entity extraction and
matching process stands with a clinical standard that all
knowledge comes from the professional medical knowl-
edge graph (PrimeKG) with hallucination elimination
and consistency guarantees. By carefully comparing
LLM-generated entities with original data and employing
threshold-based retrieval and review processes, we align
the knowledge with external KGs. By extending the def-
inition and description of entities beyond simple triples,
REALM captures more complex semantic medical back-
ground knowledge. The overall process is designed to
prevent hallucinations and preserve the high-level medi-
cal context from knowledge bases, ensuring the reliabil-
ity of the extracted information and allowing for the in-
clusion of a broader range of knowledge and relationships
(Response to Challenge 1). To infuse the extracted knowl-
edge and with consideration of heterogeneity, we design
an adaptive multimodal fusion network with self-attention
and cross-attention mechanism that attentively learns each
modality and fuses the final representation for downstream
tasks (Response to Challenge 2).

• Our extensive experiments demonstrate REALM’s supe-
rior performance on MIMIC-III mortality and readmission
tasks and its effectiveness of our designed each module.
Additionally, to meet the practical requirements of clinical
use, we conduct an evaluation on model robustness to less
training samples showing REALM’s remarkable resilience
against data sparsity. Moreover, the evaluation on quality of
retrieved entities reflects the soundness of retrieved medical
entities. Importantly, all operations in our REALM frame-
work are conducted offline, ensuring privacy and data se-
curity.

2 Related Work
2.1 Multimodal EHR Learning
The evolution of medical technology has enabled the anal-
ysis of various medical modalities—ranging from clinical
notes and time-series laboratory test data to demographics,
conditions, procedures, drugs, and medical imaging. Note-
worthy efforts in multimodal learning for healthcare include
M3Care Zhang et al. [2022] which compensates for the miss-
ing modalities by imputing task-related information in the
latent space through auxiliary information from similar pa-
tients. M3Care leverages a task-guided modality-adaptive
similarity metric to effectively handle missing modalities
without relying on unstable generative models. The work of
Zhang et al. [2023a] further explored the irregularity of time



intervals in time-series EHR data and clinical notes via a time
attention mechanism. Notably, Xu et al. [2023] introduced
an innovative approach for joint learning from visit sequences
and clinical notes, employing Gromov-Wasserstein Distance
for contrastive learning and dual-channel retrieval to enhance
patient similarity analysis. Lee et al. [2023] proposed a uni-
fied framework for learning across all EHR modalities, es-
chewing separate imputation modules in favor of modality-
aware attention mechanisms.

Although the methods mentioned above perform well
across multiple joint modalities, a common drawback is their
limited consideration of incorporating clinical background in-
formation, wherein external medical knowledge could pro-
vide significant insights into the EHR data. Furthermore, the
absence of semantic medical knowledge renders the training-
from-scratch pipeline more challenging to converge, espe-
cially when data is scarce in practical clinical settings.

2.2 Incorporating External Knowledge for EHR
Addressing the need to blend clinical background knowl-
edge with EHR data, numerous studies have leveraged med-
ical knowledge graphs (KGs) to enhance the EHR data rep-
resentation learning process, thereby augmenting predictive
performance. Techniques such as utilizing the ancestor in-
formation of nodes within KGs have been employed to re-
fine medical representation learning, as seen in GRAM Choi
et al. [2017], which integrates hierarchical medical ontolo-
gies via a graph attention network. KAME Ma et al. [2018]
builds on this by embedding ontology information throughout
the prediction process, enriching the contextual understand-
ing of models. Collaborative graph learning models, such as
CGL Lu et al. [2021], explore patient-disease interactions and
domain knowledge, while KerPrint Yang et al. [2023] focus
on addressing knowledge decay on multiple time visits. The
advent of Large Language Models (LLMs) as comprehensive
knowledge bases Sun et al. [2023] offers new possibilities,
exemplified by GraphCare Jiang et al. [2023], which creates
a KG from structured EHR data for GNN learning, though it
faces challenges related to content hallucination.

These efforts predominantly concentrate on extracting
knowledge from structured medical data, overlooking the rich
semantic information embedded in unstructured EHR data.
This oversight limits the potential for fully leveraging the
depth of knowledge contained within EHRs, highlighting the
need for methodologies that encompass both structured and
unstructured data modalities.

3 Problem Formulation
The electronic health records (EHR) dataset encompasses
both structured and unstructured data, represented respec-
tively by multivariate time-series data and clinical notes. For
the purpose of analysis, these two modalities are initially
treated independently to derive embeddings from the raw data
matrix X . Specifically, multivariate time-series data, denoted
as XTS ∈ RT×F , is characterized by T visits and F numeric
features. Concurrently, clinical notes, represented as XText,
recorded at each patient visit. Accompanying these modal-
ities, the temporal information is encapsulated in the times-

tamp vector XTime ∈ RT , with T signifying the respective
visit times.

Furthermore, external knowledge graphs (KGs) are intro-
duced to enhance the personalized representation of each in-
dividual patient. Information in the KG serve as a supple-
mental knowledge base reference.

The prediction objective is conceptualized as a binary
classification task, encompassing the prediction of in-
hospital mortality and readmission. Leveraging the com-
prehensive patient information derived from EHR data
and KG, the model endeavors to predict specific clinical
tasks. Formally, the prediction task is articulated as ŷ =
Framework(XTS ,XText,XTime,KG), where ŷ represents
the specific prediction label. Such formulation establishes a
comprehensive framework for predicting clinical outcomes
by amalgamating diverse data modalities and external knowl-
edge sources.

The notations and their descriptions in the paper are shown
in Table 1.

Table 1: Notations symbols and their descriptions

Notations Descriptions

N Number of patients
KG External knowledge graphs
XTS Time series data of one patient
XText Clinical records of one patient
XTime Record time for certain modality of one pa-

tient
XRAG Retrieved texts relative to time series or text

data of one patient
XTime Visiting timestamps of one patient

T Number of visits for a certain patient
D Embedding dimension of a single modal
F Number of features in time series

hi ∈ RT×d,h Representation of a single modality, fused
to representation h, d is each modal’s em-
bedding dimension

ETS Extracted entity set for one time series EHR
data

EText Extracted entity set for one clinical notes
data

θ Cosine similarity of two Embedding vectors
ϵ Threshold for selecting anomalies in time-

series data
η Threshold for matching extracted entities

with nodes in knowledge graph
si z-score of i-th feature of one patient
z Final representation of a patient

4 Methodology
4.1 Overview
Figure 1 shows the overall framework architecture of our pro-
posed REALM model. It consists of three main modules:

• Multimodal EHR Embedding Extraction applies GRU
as embedding model for time series XTS and LLM for text
records XText , which supports for long context inference



LLM
(Long Context)

GRU

Multimodal
Fusion

……

LLM
(Long Context)

RAG Pipeline for Time Series

RAG Pipeline for Clinical Notes

𝑋்௘௫௧

𝑋்ௌ

Z

Age: 75
Urea: 3.5
Na: 136

Visit 1

Age: 75
Urea: 5.2
Na: 133

Visit i

Age: 75
Urea: 4.3
Na: 130

Visit T

…cardiomegaly with mild 
pulmonary edema super-
imposed on background 
emphysema…

Visit 1

……

Visit i

……

Visit T

ℎ்ௌ

ℎ்௘௫௧

ℎோ஺ீ
[Entity] Emphysema
[Definition] A category 
of chronic obstructive 
pulmonary disease… 
[Description] Enphys-
sema can be classified 
by the location…

KG

Entity Set (Visit i)

[Entity] …
[Definition] …
[Description] …

[Entity] …
[Definition] …
[Description] …

Steps

1. Entities Extraction

2. Match Entity in KG

3. Entity Validation

……

…………

Figure 1: Overall architecture of our proposed REALM framework.

at once. Readable data are transferred into embeddings
hTS and hText.

• RAG-Driven Enhancement Pipeline retrieves relevant
knowledge raw input. We design a rule-based algorithm
to find outlier features from time series XTS , and optimize
LLM prompts to extract disease entities from clinical notes
XText. Then semantic based retrieval match extracted enti-
ties to relative nodes from KGs over threshold ϵ or η. After
that we get external information XRAG, and encode them
into hRAG respectively.

• Multimodal Fusion Network gets embedding hi from in-
put modality Xi and fuses them in an adaptive way to get
an enhances representation z.

4.2 Multimodal EHR Embedding Extraction
We delve into the techniques used for embedding extraction
from multimodal EHR, emphasizing the transformation from
raw, human-readable inputs X to deep semantic embeddings
h for a thorough analysis guided by the enhanced RAG.

When dealing with time-series data XTS , we employ the
Gated Recurrent Unit (GRU) network. GRU is a highly effi-
cient variant of recurrent neural networks, capable of captur-
ing the time dependencies in sequence data and encoding this
time-related information into hTS , the output from the time
series encoder. We choose GRU due to its exceptional ability
to model time in long sequence data and its potential to tackle
long-term dependencies.

hTS = GRU(XTS) (1)

For text records XText, we incorporated a LLM encoder
to obtain text embeddings hText. The primary reason for

choosing LLM as the heart of the text encoder is its out-
standing capability to handle long text contexts. Although
the BERT model excels in numerous natural language pro-
cessing tasks, its maximum input length of 512 tokens can be
a limitation, potentially leading to information loss when pro-
cessing long contexts. LLM encoder can handle with longer
input sequences, which making it a better fit for our detailed
analysis of the rich textual information in EHR.

hText = LLM(XText) (2)

In the realm of EHR, the temporal dimension of patient
visits plays a pivotal role, with each visit characterized by a
unique timestamp, denoted as XTime. To adeptly navigate
the challenges posed by the irregular and asynchronous na-
ture of time-series data within EHR, it is essential to have an
embedding strategy that can seamlessly translate these dis-
crete temporal markers into a meaningful, continuous vector
space. To this end, we draw inspiration from the advanced
techniques in multi-modal EHR analysis, where time-series
data is often given precedence due to its critical significance.

Building upon the conventional Multilayer Perceptron
(MLP) approach to embed time stamps hTime, we propose
an enhanced method that leverages the sin/cos transforma-
tion, akin to the Transformer positional embedding mecha-
nism. This approach not only captures the sequential order
of visits but also preserves the cyclical continuity inherent
in time-series data. By employing a sinusoidal function to
encode time stamps, our model is endowed with the ability
to discern the intricate inter-modality temporal relationships
that are often neglected when time information is discarded.
This sin/cos embedding harmonizes with the sophisticated at-
tention mechanisms, enriching the model’s capacity to prior-



itize relevant modalities and adapt to the dynamism of time-
sensitive clinical tasks.

hTime = MLP(XTime) (3)
By converting these three different types of data into com-

patible embeddings, our model lays a solid groundwork for
the multimodal analysis of EHR. This strategy of embed-
ding extraction sets the stage for further analysis tasks under
the RAG framework, allowing us to accurately and compre-
hensively understand and analyze the complex information in
EHR.

Naturally, RAG incorporates two RAG feature extraction
submodules, each dealing with a different modality. These
will be detailed in the following subsection.

4.3 RAG-Driven Enhancement Pipeline
Extract Entities from Multimodal EHR Data
To fully leverage the expert information in the knowledge
graph to enhance prediction accuracy, we need to extract
disease entities from time-series data and clinical notes and
match them with the information in the graph. The disease
entities set in the time-series data are denoted as ETS , and
those in the clinical notes data can be directly denoted as
EText. We design two pipelines for each modality.

Figure 2: RAG pipeline for time series EHR modality.

RAG module for time series. Time series are a structured
data including feature names and their values after clinical
examination. Each feature name reflects parts of physical
condition, which reminds us distinguishing patients through
features out of reference range. As show in Figure 2, this
record in total series shows a low Blood Pressure and high
Blood Urea Nitrogen far beyond normal range. This reminds
us the patient may suffer from hypotension and uremia. In
fact, we can found these feature names in diseases defeni-
tions and descriptions, and both lead to severe health risks.

Considering continuous numeric data have obvious distribu-
tion characteristics, we can find outlier values by calculating
z-score of each feature, each seemed as an entity. There are
mostly more than one entity (or outlier feature) in each pa-
tient, and some are missing values, so we only focus on those
not empty. For each feature XTSi

, we can obtain mean value
and standard deviation by their reference range, and calculate
z-score of each feature as below, where si stands for z-score
of i-th feature of one patient.

si =
XTSi −mean(XTSi)

std(XTSi
)

(4)

Features over specified threshold (like 3-σ) are regarded as
outlier ones, which means unhealthy physical conditions. We
set ϵ as a threshold to screen out abnormal values, features
with si greater than ϵ are regarded as abnormal entities and
worth extraction. In order to set a reasonable threshold for
clinical predictions, we divided a subset manually, and ob-
serve extracted entities under different ϵ, and determine one
above which most entities are instructive.

Figure 3: RAG pipeline for clinical notes modality.

RAG module for clinical text records. Due to context lim-
itations of models like BERT, it may cause information loss
when encoding clinical notes with BERT. LLM supports for
longer context, but often introduce hallucination. So we uti-
lize LLM as entities extractor with post processing:

1. Entities Extraction: To reduce LLM hallucination, we
use one-shot as demostration and clear instruction in
prompt, guiding LLM to focus only on disease entities
appearing in raw notes. When calling LLM model once,
sometimes LLM may cause failure without any entities re-
turned, so we operate in multi rounds to enlarge current ex-
tracted entity set. In i-th round, we concat prompt Pextract

and clinical text notes XText together as LLM input, and
we can get a set of entities in output Ei

Text, and update



total entities set with union of current one and last one.

Ei
Text = LLM(concat(PExtract,XText)) (5)

EText := SText

⋃
Si
Text (6)

where PExtract and XText represent the prompt to extract
disease entities and clinical notes data respectively.

2. Entities Refinement: To mitigate hallucination issues of
LLM, we design a post-processing procedure after extrac-
tion. This module consists of three steps: firstly, discard
entities not appear in the original text; secondly, filter en-
tities not in disease type using LLM; at last, delete du-
plicated entities in semantics. After that we get a illegal
entities set, and delete them from last one. This procedure
may lead to new empty set, so we should loop extraction
above.

EText := EText −Eillegal (7)
We repeat step 1 and step 2 until convergence, to ensure
the quality and quantity of extracted entities.

Match extracted entities with external KG
To accurately match the extracted entities with those in the
knowledge graph, we employ dense vector retrieval based
on semantics. First, we obtain embeddings of all KG nodes
Nodes with LLM. And we encode each entity in set ETS or
EText with the same LLM, to ensure embeddings align in the
same vector space.

hn = LLM(n), n ∈ Nodes (8)
he = LLM(e), e ∈ E (9)

Then we use current entity e as query, and compute cosine
similarities between Ee and all embeddings of nodes in KG
hn.

θne =
hn · he

∥hn∥∥he∥
(10)

In our method, we set a threshold η , to judge whether two
embeddings are similar enough. If the calculated cosine sim-
ilarity is greater than η, it indicates that the disease entity is
closely related to this node in KGs, and we regard related
attributes from this node can help us with understanding dis-
eases meanings.

To gain an appropriate threshold, we partition a subset
and examined the matching status of entities under different
thresholds, followed by manual expert verification.

Encode KG Knowledge
To fully utilize the information of matched entities in the
graph, we encode them using LLM. Firstly, we concatenate
each node details together in format like (entity name, entity
definition, entity description). And we join multiple node de-
tails into one sequence with specified delimiter. Then we get
references knowledge as a supplement information, and get
its representation with LLM, also considering of long con-
text.

hRAG = LLM(XRAG) (11)
Additionally, when no entities found in the text, or no
matched nodes in KG, we write an instruction text like "You
are an experience doctor, please combine your background

knowledge and patient’s records to judge..." in replace of
empty string instead of padding with zeros. In this way
LLM can also encode an embedding containing instructive
information to motivating more comprehensive understand-
ing within the notes itself.

4.4 Multimodal Fusion Network

Figure 4: Fusion module. It combines multimodal embeddings with
attention mechanism into a fused representation.

Currently, there are three learned hidden representations,
denoted respectively as hTS , hText, and hRAG. We first
concatenate the hidden representations extracted from enti-
ties with those from the text, and then utilize MLP network to
map them to a unified dimension.

h′
Text = MLP(Concat(hText,hRAG)) (12)

To better integrate information from different modalities,
we proposed an attention-based fusion network mainly con-
sisting of self-attention layers and cross-attention layers.
Specifically, we first apply self-attention to each modality.
Then we use the output of one modality as the query, and the
output of the other modality as the key and value to compute
cross-attention.

h̃Text = MHSA(h′
Text + hTime),

h̃TS = MHSA(hTS + hTime),

hText = MHCA(h̃Text, h̃TS),

hTS = MHCA(h̃TS , h̃Text)

(13)

where MHSA represents multi-head self-attention, MHCA
represents multi-head cross-attention, and hTime represents
time embedding. In addition, we apply residual connections
and BatchNorm to every multi-head attention layer and Feed-
Forward Network.

As a result, the outputs of the two cross-attention modules
have carried information from both modalities. We further
sum them up and use attention poooling layer to obtain the
fused information.

z = α ∗ zTS + (1− α) ∗ zText

z∗ = AttnPool(MLP(z))
(14)

where α is a learnable parameter and AttnPool refers to at-
tention pooling.



Finally, the fused representation z∗ is expected to predict
downstream tasks. We pass z∗ through a single-layer MLP
network to obtain the final prediction results ŷ:

ŷ = MLP(σ(z∗)) (15)

The BCE Loss is selected as the loss function for the binary
mortality outcome and readmission prediction task:

L(ŷ, y) = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi))

(16)
where N is the number of patients within one batch, ŷ ∈ [0, 1]
is the predicted probability and y is the ground truth.

5 Experimental Setups
5.1 Dataset, KG and Task Description
Sourced from the EHRs of the Beth Israel Deaconess Med-
ical Center, MIMIC-III dataset is extensive and widely
used in healthcare research. We adhere to the benchmark
pipeline Gao et al. [2024]; Zhu et al. [2024a] for preprocess-
ing time-series data. 17 lab test features (include categorical
features) and 2 demographic features (age and gender) are ex-
tracted. To minimize missing data, we consolidate every con-
secutive 12-hour segment into a single record for each patient,
focusing on the first 48 records. And we follow Khadanga
et al. [2019] to extract clinical notes. We excluded all clin-
ical notes lacking associated chart time and removed all pa-
tients without any notes. We randomly split the dataset into
training (10776 samples), validation (1539 samples) and test
(3080 samples) set with 7:1:2 percentage.

The external knowledge base we utilized is
PrimeKG Chandak et al. [2023], which integrates 20
high-quality resources to describe 17,080 diseases with
4,050,249 relationships representing ten major biological
scales, including disease-associated entities. Futhermore,
PrimeKG extracts textual features of disease nodes con-
taining information about disease prevalence, symptoms,
etiology, risk factors, epidemiology, clinical descriptions,
management and treatment, complications, prevention, and
when to seek medical attention, which are highly relevant to
the clinical prediction tasks.

We conduct in-hospital mortality prediction and 30-day
readmission prediction task in our experiments. Both are
binary classification tasks: predicting patient mortality out-
comes (0: alive, 1: dead) and readmission likelihood (0: no
readmission, 1: possible readmission).

5.2 Evaluation Metrics
We adopt the following evaluation metrics, which are widely
used in binary classification tasks:

• AUROC: This metric is our primary consideration in bi-
nary classification tasks due to its widespread use in clin-
ical settings and its effectiveness in handling imbalanced
datasets McDermott et al. [2024].

• AUPRC: The AUPRC is particularly useful for evaluating
performance in datasets with a significant imbalance be-
tween classes Kim and Hwang [2022].

• min(+P, Se): This composite metric represents the min-
imum value between precision (+P) and sensitivity (Se),
providing a balanced measure of model performance Ma
et al. [2022].

• F1: The F1 score is particularly useful in scenarios where
an equitable trade-off between precision and recall is de-
sired Chinchor [1992].

All these four metrics are the higher the better.

5.3 Hyperparameters
The batch size is consistently set at 256. For all experiments,
we report performance in the form of mean±std., where we
adopt bootstrap strategy for 10 times.

We conduct a grid search for the baseline models. The hy-
perparameters for our REALM model are: a hidden dimen-
sion of 312 and a learning rate of 6e-4.

5.4 Baseline Models
EHR Prediction Models We include multimodal EHR
baseline models (M3Care Zhang et al. [2022], MPIM Zhang
et al. [2023a], UMM Lee et al. [2023], VecoCareXu et al.
[2023]) and approaches that incorporating external knowl-
edge from KG (GRAM Choi et al. [2017], KAME Ma et al.
[2018], CGL Lu et al. [2021], KerPrint Yang et al. [2023]) as
our baselines. Detailed description of each model is in Ap-
pendix.

Text Embedding Approaches we compare different text
embedding approaches including BERT’s [CLS] token De-
vlin et al. [2018], BGE-M3 Chen and Xiao [2024] and Qwen-
7B’s encoder Bai et al. [2023]. Detailed set ups are described
in Appendix.

Multimodal Fusion Baselines To examine the effective-
ness of our fusion network, we consider fusion methods:
Add Wu and Han [2018], Concat Khadanga et al. [2019];
Deznabi et al. [2021], Tensor Fusion (TF) Zadeh et al. [2017],
and MAG Rahman et al. [2020]; Yang and Wu [2021]. De-
tailed description is in Appendix.

6 Experimental Results
The performance of our REALM framework on in-hospital
mortality and 30-day readmission prediction tasks on the
MIMIC-III dataset is summarized in Table 2. Our approach
consistently outperforms the baseline models. Specifically,
REALM achieves a significant relative improvement in AU-
ROC (1.09%, 2.06%), AUPRC (2.75%, 4.75%), min(+P, Se)
(0.79%, 3.12%) and F1 scores (21.90%, 30.39%) with the
best baseline model for both tasks, indicating its superior
practical applicability in real-world clinical settings.

6.1 Ablation Studies
Comparing Each Modality with RAG-Enhancement
To understand the contribution of RAG-enhancement to each
modality, we conducted an ablation study. The results, as il-
lustrated in Table 3, reveal that the RAG-enhanced versions of
both time-series and text modalities significantly improve the



Table 2: In-hospital mortality and readmission prediction results on MIMIC-III. Bold indicates the best performance. All metrics are multi-
plied by 100 for readability purposes.

Methods Mortality Outcome Prediction 30-Day Readmission Prediction
AUROC AUPRC min(+P, Se) F1 AUROC AUPRC min(+P, Se) F1

MPIM 85.24±1.12 50.52±2.56 50.59±2.33 30.53±2.33 78.62±1.58 49.30±3.01 49.65±2.54 26.61±2.20
UMM 84.01±1.10 49.76±2.21 49.41±2.45 36.21±1.90 77.46±1.36 47.81±2.55 47.27±1.91 34.14±2.21
VecoCare 83.43±1.49 47.28±2.68 47.92±2.22 42.52±2.08 76.93±1.82 46.18±2.76 47.22±2.63 38.79±2.27
M3Care 83.33±1.24 47.86±2.33 49.96±1.99 24.81±2.62 76.80±1.55 46.29±2.62 45.38±2.32 21.51±2.23

GRAM 84.70±1.34 49.21±4.45 49.64±2.85 38.02±3.19 77.84±1.49 47.97±3.68 46.95±2.12 35.24±2.89
KAME 84.59±1.11 49.48±3.37 49.51±2.33 36.14±2.24 78.04±1.34 48.23±3.21 47.41±2.50 31.70±2.19
CGL 84.20±1.16 47.64±3.47 47.67±2.61 38.36±2.04 77.47±1.33 46.68±3.33 47.73±2.25 35.34±2.35
KerPrint 85.29±1.21 51.23±3.48 50.88±2.24 37.00±3.54 78.41±1.50 49.70±3.23 49.39±2.53 34.31±2.35

Ours (REALM) 86.22±0.81 52.64±2.47 50.92±2.01 51.83±2.10 80.24±1.53 52.06±2.64 51.20±2.50 50.58±2.51

model’s performance. This confirms the hypothesis that en-
riching EHR data with external medical knowledge can effec-
tively capture more complex semantic medical background
knowledge, leading to more accurate clinical predictions.

Comparing Different Fusion Network
Our analysis extends to comparing the effectiveness of dif-
ferent fusion strategies for integrating time-series and text
modalities. As shown in Table 3, our designed self- and cross-
attention based adaptive multimodal fusion network outper-
forms all baseline methods in both tasks. This demonstrates
the advantage of our fusion strategy in attentively learn-
ing and integrating modality-specific features for improved
prediction performance. Moreover, with RAG-enhanced
knowledge combining both modalities, our REALM method
achieve the SOTA performance against all reduced versions.

Comparing Text Embedding Models
The impact of using different text embedding models on the
performance of our REALM framework is also explored. Ta-
ble 4 highlights that the Qwen-7B model, with its extensive
training data and long-context support, significantly outper-
forms BERT and BGE-M3 in all metrics. This suggests that
leveraging advanced large language models for embedding
clinical notes can enhance the model’s understanding of com-
plex medical narratives.

6.2 Further Analysis
Robustness to Data Sparsity
To evaluate the robustness of our REALM framework against
data sparsity, we conducted experiments by artificially reduc-
ing the dataset’s completeness by 20%, 40%, 60% and 80%.
As depicted in Figure 5, REALM demonstrates remarkable
resilience, outperforming other recent SOTA models even un-
der extreme data scarcity. This robustness is particularly cru-
cial in clinical environments where large amount of data col-
lection is often challenging, making REALM a valuable tool
for real-world applications.

Evaluation of Quality of Retrieved Entities
We take the entities extracted by RAG pipeline as input to
XGBoost model to calculate the importance of the entities,
thereby indirectly measuring the contribution of the entities
to the prediction task. Figure 6 shows the medical record of a
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Figure 5: AUPRC Performance across 4 Sparsity Levels on MIMIC-
III mortality outcome task. REALM exhibits better performance on
multiple missing rate levels than recent SOTA baselines.

Figure 6: Case study of retrieved entities in original clinical notes
with importance score computed. The deeper yellow background
color denotes higher importance score.

patient’s visit and the extracted disease type entities, among
which "atrial fibrillation" and "sepsis" have the highest impor-
tance scores, followed by "osteomyelitis", and finally "renal
failure". By examining the nodes and attribute information
corresponding to each disease entity in the knowledge graph,
we find that they are all relatively dangerous diseases in clini-
cal practice, and patients have a high probability of experienc-
ing mortality. This reflects the effectiveness of our proposed
RAG-driven process.

7 Conclusions
In this work, we propose REALM, a RAG-driven multimodal
EHR data representation learning framework that incorpo-
rates time-series EHR, clinical notes data and external knowl-
edge graph for healthcare prediction. REALM framework
comprehensively leverages LLM’s semantic reasoning abil-



Table 3: Ablation Studies results of 1) comparing each modality with RAG-enhancement, 2) comparing different multimodal fusion network.
Bold indicates the best performance. All metrics are multiplied by 100 for readability purposes.

Methods Mortality Outcome Prediction 30-Day Readmission Prediction
AUROC AUPRC min(+P, Se) F1 AUROC AUPRC min(+P, Se) F1

TS only 83.43±1.08 48.70±3.04 46.72±2.10 37.38±2.94 77.63±1.38 48.11±3.23 47.41±2.08 33.40±2.91
TS+RAGTS 84.22±0.98 49.80±3.15 48.35±1.91 41.10±2.95 78.02±1.37 48.36±2.98 47.31±2.38 34.39±2.73
Text only 80.11±1.69 40.54±3.51 41.05±3.27 33.96±2.35 74.57±1.86 40.99±3.52 42.49±3.10 30.87±2.50
Text+RAGText 81.01±1.52 42.92±3.43 42.51±3.02 45.13±2.44 74.48±1.91 43.38±3.70 43.46±3.18 40.01±2.91

TS+Text: Add 84.72±1.03 48.60±3.45 50.05±2.59 46.86±2.43 78.23±1.74 48.77±3.61 48.76±2.87 47.29±2.46
TS+Text: Concat 85.22±0.93 49.94±3.14 49.75±1.82 46.51±2.18 78.96±1.48 50.08±3.27 50.60±2.18 40.61±2.02
TS+Text: TF 84.13±1.24 49.06±3.38 50.21±2.88 37.54±3.05 77.16±1.96 47.64±3.60 48.17±2.29 31.86±2.65
TS+Text: MAG 84.75±0.97 50.31±2.71 48.58±2.42 45.81±2.20 78.04±1.58 49.26±2.86 48.88±2.37 45.30±2.43
TS+Text: Ours 85.18±0.95 50.68±2.64 47.90±2.27 49.81±2.37 78.79±1.47 49.69±2.92 48.91±2.57 49.94±2.36

Ours (REALM) 86.22±0.81 52.64±2.47 50.92±2.01 51.83±2.10 80.24±1.53 52.06±2.64 51.20±2.50 50.58±2.51

Table 4: Ablation study results of suing different text embedding
models. Bold indicates the best performance. All metrics are multi-
plied by 100 for readability purposes.

Tasks Metrics BERT BGE-M3 Qwen-7B

Out.

AUROC 83.66±1.34 84.72±0.97 86.22±0.81
AUPRC 48.22±3.13 50.42±2.88 52.64±2.47

min(+P, Se) 48.39±3.26 49.29±2.55 50.92±2.01
F1 43.46±2.61 49.40±2.41 51.83±2.10

Read.

AUROC 76.55±1.89 78.03±1.63 80.24±1.53
AUPRC 46.10±3.17 49.10±3.28 52.06±2.64

min(+P, Se) 46.10±3.10 47.67±2.41 51.20±2.50
F1 39.68±2.73 48.81±2.22 50.58±2.51

ity, long context encoding capacity, and knowledge graph’s
medical context. REALM framework achieve SOTA per-
formance on MIMIC-III datasets’ in-hospital mortality and
30-day readmission tasks, showcasing its effectiveness of in-
corporating knowledge from external knowledge bases. Our
work marks a step towards more effective utilization of EHR
data in healthcare, offering a potent solution to enhance clin-
ical representations with external knowledge and LLMs.
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