
ECE 50024 Machine Learning
Stanley Chan
stanchan@purdue.edu

Part 4 Learning Theory

April 20, 2023

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Notations . 2

2 Is Learning Feasible? 5
2.1 Learning outside the training set D . 5
2.2 In-sample and out-sample error . 7
2.3 Basic probability inequality . 9
2.4 Chernoff bound . 11
2.5 Hoeffding inequality . 13
2.6 PAC framework . 16

3 VC Analysis 19
3.1 Generalization bound . 19
3.2 Dichotomy . 20
3.3 The growth function . 22
3.4 VC dimension . 25
3.5 Bounding the growth function . 28
3.6 Sample and model complexity . 29

4 Bias and variance analysis 32
4.1 From VC analysis to bias-variance analysis . 32
4.2 Decomposition of the bias-variance . 33
4.3 Overfitting . 36
4.4 Bias-variance analysis vs VC analysis . 40

© 2023 Stanley Chan. All Rights Reserved. 1

1 Introduction

1.1 Motivation

When we have built a classifier, one question people always ask is how good the classifier is. They want
to evaluate the classifier. They want to see whether the classifier is able to predict what it is supposed to
predict. Often times, the “gold standard” is to report the classification accuracy:

How do people think about evaluating a classifier?

Give me a testing dataset, and I will tell you how many times the classifier has done correctly.

This is one way of evaluating the classifier. However, does this evaluation method really tells us how
good the classifier is? Not clear. All it says is that for this classifier trained on a particular training dataset
and tested on a particular testing dataset, the classifier performs such and such. Will it perform well if we
train the classifier using another training set, maybe containing more data points? Will it perform well if
we test it on a different testing dataset? It seems that we lack a way to quantify the generalization ability
of our classifier.

There is another difficulty. When we train the classifier, we can only access the training data but not
the testing data. This is like taking an exam. We can never see the exam questions when we study, for
otherwise we will defeat the purpose of the exam! Since we only have the training set when we design our
classifier, how do we tell whether we have trained a good classifier? Should we choose a more complex model?
How many samples do we need? Remember, we cannot use any testing data and so all the evaluation has
to be done internally using the training data. How to do that? Again, we are missing a way to quantify the
performance of the classifier.

What are the objectives of this chapter?

The objective of this chapter is to answer a few theoretical (and also practical) questions in
learning:

(i) Is learning feasible?

(ii) How much can a classifier generalize?

(iii) What is the relationship between number of training samples and the complexity of the classifier?

(iv) How do we tell whether we have obtained a good classifier during the training?

1.2 Notations

Let us start by recalling (refreshing) our notations. The vector x ∈ Rd is called the input vector. There
is an unknown target function f : X → Y which maps x to a label y = f(x). The set X contains all the
input vectors, and we call X the input space. The set Y contains the corresponding labels, and we call Y
the output space.

Figure 1: Input and output in a learning model.

© 2023 Stanley Chan. All Rights Reserved. 2

In any supervised learning scenario, there is always a training set D. The training set contains N
input-output pairs

(x1, y1), . . . , (xN , yN),

where xn and yn are related via yn = f(xn), for n = 1, . . . , N . These input-output pairs are called the data
points or samples. Since D is a finite collection of data points, there are many x ∈ X that do not live in the
training set D. A data point xn that is inside D is called an in-sample, and a data point x that is outside
D is called an out-sample.

Figure 2: In samples and out samples.

What are in-samples and out-samples?

� In-samples are data points xn that live inside the training set D. So, in-sample = training data
points.

� Out-samples are data points xn that are not present in the training set D. So out-sample =
testing data points.

When we say that we use a machine learning algorithm to learn a classifier, we mean that we have
an algorithmic procedure A which uses the training set D to select a hypothesis function g : X → Y. The
hypothesis function is again a mapping from X to Y, because it tells what a sample x is being classified.
However, a hypothesis function g is not the same as the target function f . We never know f because f is
simply unknown. No matter how much we learn, the hypothesis function g is at best an approximation of f .
The approximation error can be zero in some hand-craved toy examples, but in general g ̸= f . All hypothesis
functions are contained in the hypothesis set H. If the hypothesis set is finite, then H = {h1, . . . , hM}, and g
will be one of these hm’s. A hypothesis set can be infinite, for example we can perturb a perceptron decision
boundary by an infinitesimal step to an infinite hypothesis set. An infinite hypothesis set is denoted by
H = {hσ}, where σ denotes a continuous parameter.

What are hypothesis functions?

� They are the candidate classifiers you want evaluate. They are denoted as h1, . . . , hM .

� The collection of these hypothesis functions is the set H = {h1, . . . , hM}.
� The job of a learning algorithm A is to pick the “best” hypothesis function from H. “Best”
depends on how you define.

The drawings in Figure 3 illustrate a few key concepts we just mentioned. On the left hand side there
is an input space X , which contains a small subset D. The subset D is the training set, which includes a
finite number of training samples or in-samples. There is an unknown target function f . The target function
f maps an xn to produce an output yn = f(xn), hence giving a colored dots in the middle of the figure. The
objective of learning is to learn a classifier which can classify the red from the blue. The space containing

© 2023 Stanley Chan. All Rights Reserved. 3

all the possible hypothesis is the hypothesis set H, which contains h1, . . . , hM . The final hypothesis function
returned by the learning algorithm is g.

Figure 3: [Left] Treat the cloud as the entire input space X and correspondingly the output space Y. The
dots are the in-samples x1, . . . ,xN . The target function is a mapping f which takes xn and send it to yn.
The red and blue colors indicate the class label. [Right] A learning algorithm picks a hypothesis function g
from the hypothesis set H = {h1, . . . , hM}. Note that some hypotheses are good, and some are bad. A good
learning algorithm will pick a good hypothesis, and a bad learning algorithm can pick a bad hypothesis.

Figure 4 illustrates what we called a probabilistic learning model. It is called a probabilistic learning
model because there is an unknown distribution p(x). The training samples {x1, . . . ,xN} are generated
according to p(x). The same p(x) also generates the testing samples x. It is possible to lift the probabilistic
assumption so that the training samples are drawn deterministically. In this case, the samples are simply
fixed set of data points {x1, . . . ,xN}. The deterministic assumption will make learning infeasible, as we will
see shortly. Therefore, we shall mainly focus on the probabilistic assumption.

Figure 4: All essential components of a machine learning model.

© 2023 Stanley Chan. All Rights Reserved. 4

Why need a probability distribution?

� To link the in-samples and the out-samples.

� We assume that all sample x1, . . . ,xN are drawn from the distribution p(x).

� If the in-samples are out-samples do not come from the same distribution, there is no way you
can learn.

2 Is Learning Feasible?

The first question we ask is: Suppose we have a training set D, can we learn the target function f? If the
answer is YES, then we are all in business, because it means that we will be able to predict the data we have
not seen. If the answer is NO, then machine learning is a lair and we should all go home, because it means
that we can only memorize what we have seen but we will not be able to predict what we have not seen.

Interestingly, the answer to this question depends on how we define the training samples xn’s. If xn’s
are deterministically defined, then the answer is NO because D can contain no information about the out-
samples. Thus, there is no way to learn outside D. If xn’s are drawn from a probabilistic distribution, then
the answer is YES because the distribution will tell us something about the out-samples. Let us look at
these two situations one by one.

2.1 Learning outside the training set D
Let us look at the deterministic case. Consider a 3-dimensional input space X = {0, 1}3. Each vector x ∈ X
is a binary vector containing three elements, e.g., x = [0, 0, 1]T or x = [1, 0, 1]T .

Number of input vectors. Since there are 3 elements and each element take a binary state, there are
totally 23 = 8 input vectors in X .

Number of target functions. How about the number of possible target functions f can we have? Re-
member, a target function f is a mapping which converts an input vector x to a label y. For simplicity let
us assume that f maps x to a binary output y ∈ {+1,−1}. Since there are 8 input vectors, we can think of
f as a 8-bit vector, e.g., f = [−1, +1, −1, −1, −1, +1, +1, +1], where each entry represents the output.
If we do the calculation, we can show that there are totally 28 = 256 possible target functions.

What is the learning problem? Here is the learning problem. Can we learn f from D? To ensure that f
is unknown, we will not disclose what f is. Instead, we assume that there is a training set D containing 6
training samples {x1, . . . ,x6}. Corresponding to each xn is the label yn. The relationship between xn and
yn is shown in the table below. So our task is to pick a target function from the 256 possible choices that
can best predict the two unknown cases.

Figure 5: The training set D for our example. We have 6 training samples (x1, y1), . . . , (x6, y6). Our goal is
to pick the best hypothesis function that can explain these known observations.

© 2023 Stanley Chan. All Rights Reserved. 5

Possibility 1. The first possible choice of the final hypothesis function g is shown in the Figure below.
Since one 1’s gives us • and anything with more than one 1’s gives us ◦, the remaining two cases must be ◦
and ◦, respectively, because [1, 1, 0] has more than one 1’s, and [1, 1, 1] also has more than one 1’s.

Figure 6: Possibility 1: We check whether the number of 1’s is more than one. If no, we predict •. If yes,
we predict ◦.

Possibility 2. The second possible choice of the final hypothesis function g is shown in the Figure below.
Since an odd number of 1’s gives us • and an even number of 1’s gives us ◦, the remaining two cases must
be ◦ and •, respectively, because [1, 1, 0] is even, and [1, 1, 1] is odd.

Figure 7: Possibility 2: We check whether the number of 1’s odd or even. If even, we predict •. If odd, we
predict ◦.

General case. Since we have seen 6 out of 8 input vectors in D, there remains two input vectors we
have not seen and need to predict. Thus, we can quickly reduce the number of possible target functions to
22 = 4. Let us call these target functions f1, f2, f3 and f4. The boolean structure of these target functions
are shown on the right hand side of the table above. Note that the first 6 entries of each fi is fixed because
they are already observed in D.

In the table below we write down the final hypothesis function g. The last two entries of g is to be
determined by the learning algorithm. If the learning algorithm decides “◦”, then we will have both “◦”.
If the learning algorithm decides a “◦” followed by a “•”, then we will have a “◦” followed by a “•”. So
the final hypothesis function g can be one of the 4 possible choices, same number of choices of the target
functions.

Since we assert that f is unknown, by only observing the first 6 entries we will have 4 equally good
hypothesis functions. They are equally good, because no matter which hypothesis function we choose, the
last 2 entries will agree or disagree with the target depending on which one is the true target function. For
example, on the left hand side of the table below, the true target function is f1 and so our g is correct. But
if the true target function is f3, e.g., the right hand side of the table, then our g is wrong. We can repeat the
experiment by choosing another g, and we can prove that not matter which g we choose, we only have 25%

© 2023 Stanley Chan. All Rights Reserved. 6

Figure 8: All possible choices

chance of picking the correct one. This is the same as drawing a lottery from 4 numbers. The information
we learned from the training set D does not allow us to infer anything outside D.

xn yn g f1 f2 f3 f4
0 0 0 ◦ ◦ ◦ ◦ ◦ ◦
0 0 1 • • • • • •
0 1 0 • • • • • •
0 1 1 ◦ ◦ ◦ ◦ ◦ ◦
1 0 0 • • • • • •
1 0 1 ◦ ◦ ◦ ◦ ◦ ◦
1 1 0 ◦ ◦ • ◦ •
1 1 1 ◦ ◦ ◦ • •

xn yn g f1 f2 f3 f4
0 0 0 ◦ ◦ ◦ ◦ ◦ ◦
0 0 1 • • • • • •
0 1 0 • • • • • •
0 1 1 ◦ ◦ ◦ ◦ ◦ ◦
1 0 0 • • • • • •
1 0 1 ◦ ◦ ◦ ◦ ◦ ◦
1 1 0 ◦ ◦ • ◦ •
1 1 1 ◦ ◦ ◦ • •

Table 1: Suppose we say that the final hypothesis g is the one shown above. If the true function is f1,
then we are correct. But if the true function is f3, we are wrong. Since there is no additional information
regarding how the training samples are related to the testing samples, there is no way we can differentiate
the better or worse of f1 and f3. So we end up with a lottery draw, and this defeats the purpose of learning.

The above analysis shows that learning is infeasible if we have a deterministic generator generating the
training samples. The argument holds regardless which learning algorithm A we use, and what hypothesis
set H we choose. Whether H contains the correct hypothesis function, and whether A can pick the correct
hypothesis, there is no difference in terms of predicting outside D. We can also extend the analysis from
binary function to general learning problem. As long as f remains unknown, it is impossible to predict
outside D.

What have we learned from this example?

� If the training samples and the testing samples are drawn deterministically from an unknown
process, there is no way a machine learning can learn anything meaningful.

� For a machine learning algorithm to work, you need the training samples and the testing samples
to be correlated via some probability distributions.

2.2 In-sample and out-sample error

The deterministic analysis gives us a pessimistic result. Now, let us look at a probabilistic analysis. On
top of the training set D, we pose an assumption. We assume that all x ∈ X is drawn from a distribution
pX(x). This includes all the in-samples xn ∈ D and the out-samples x ∈ X . At a first glance, putting a
distributional assumption pX(x) does not seem any different from the deterministic case: We still have a

© 2023 Stanley Chan. All Rights Reserved. 7

training set D = {x1, . . . ,xN}, and f is still unknown. How can we learn the unknown f using just the
training samples?

Suppose that we pick a hypothesis function h from the hypothesis set H. For every in-sample xn, we
check whether the output returned by h is the same as the output returned by f , i.e., {h(xn) = f(xn)}, for
n = 1, . . . , N . If {h(xn) = f(xn)}, then we say that the in-sample xn is correctly classified in the training. If
{h(xn) ̸= f(xn)}, then we say that xn is incorrectly classified. Averaging over all the N samples, we obtain
a quantity called the in-sample error, or the training error.

Definition 1 (In-sample Error). Consider a training set D = {x1, . . . ,xN}, and a target function f .
The in-sample error (or the training error) of a hypothesis function h ∈ H is the empirical average
of {h(xn) ̸= f(xn)}:

Ein(h)
def
=

1

N

N∑
n=1

[[h(xn) ̸= f(xn)]], (1)

where [[·]] = 1 if the statement inside the bracket is true, and = 0 if the statement is false.

Training error is the amount of error we have during the training process. A good learning algorithm A
should pick a hypothesis h that gives low training error. Training error is sometimes called the cost function
(or the loss function) when we post the learning problem as an optimization. Thus, picking a good hypothesis
is equivalent to minimizing the training error.

What is “in-sample” error?

� In-sample error is the training error.

� It is a finite average of the error accumulated in the training dataset.

� In-sample error can be computed from the training dataset.

How about the out-samples? Since we assume that x is drawn from a distribution pX(x), we can define
the out-sample error as the probability that {h(x) ̸= f(x)}, for all x ∼ pX(x).

Definition 2 (Out-sample Error). Consider an input space X containing elements x drawn from
a distribution pX(x), and a target function f . The out-sample error (or the testing error) of a
hypothesis function h ∈ H is

Eout(h)
def
= P[h(x) ̸= f(x)], (2)

where P[·] measures the probability of the statement based on the distribution pX(x).

Since [[·]] is a binary function, the out-sample error is the expected value of a sample being misclassified over
the entire distribution:

Eout(h) = P[h(x) ̸= f(x)]

= [[h(xn) ̸= f(xn)]]︸ ︷︷ ︸
=1

P
{
h(xn) ̸= f(xn)

}
+ [[h(xn) = f(xn)]]︸ ︷︷ ︸

=0

(
1− P

{
h(xn) ̸= f(xn)

})
= E

{
[[h(xn) ̸= f(xn)]]

}
.

(3)

Therefore, the relationship between the in-sample error Ein(h) and out-sample error Eout(h) is equivalent
to the relationship between the empirical average and the population mean of a random variable. Figure 9
shows how an in-sample error is computed.

© 2023 Stanley Chan. All Rights Reserved. 8

What is “out-sample” error?

� Out-sample error is the testing error. It is the error that tells us how well our machine learning
algorithm is doing.

� It is the statistical expectation of the error of the population set.

� Out-sample error cannot be computed from the training set. It can only be estimated, if the
training and testing data are drawn from the same distribution.

Figure 9: Ein is evaluated using the training data, whereas Eout is evaluated using the testing sample.

2.3 Basic probability inequality

We now need a mathematical tool to analyze Ein(h) and Eout(h). But to elaborate on our tools, we need to
review a few basic results in probability inequalities.

Our first inequality is the Markov’s inequality. It is an elementary inequality that links probability
and expectation.

Theorem 1 (Markov’s inequality). Let X ≥ 0 be a non-negative random variable. Then, for any
ε > 0, we have

P[X ≥ ε] ≤ E[X]

ε
. (4)

Markov’s inequality concerns the tail of the random variable. As illustrated in Figure ??, P[X ≥ ε]
measures the probability that the random variable takes a value greater than ε. Markov’s inequality asserts
that this probability P[X ≥ ε] is upper-bounded by the ratio E[X]/ε. This result is useful because it relates
the probability and the expectation. In many problems the probability P[X ≥ ε] could be difficult to evaluate
if the PDF is complicated. The expectation, on the other hand, is usually easier to evaluate.

Proof. Consider εP[X ≥ ε]. It follows that

εP[X ≥ ε] =

∫ ∞

ε

ε fX(x) dx ≤
∫ ∞

ε

xfX(x) dx,

where the inequality is valid because for any x ≥ ε the integrand (which is non-negative) will always increase
(or at least not decrease). It then follows that∫ ∞

ε

xfX(x) dx ≤
∫ ∞

0

xfX(x) dx = E[X]. □

© 2023 Stanley Chan. All Rights Reserved. 9

How tight is Markov’s inequality? It is possible to create a random variable such that the equality is
met. However, in general, the estimate provided by the upper bound is not tight. Here is an example.

Example 1. Let X ∼ Uniform(0, 4). Verify Markov’s inequality for P[X ≥ 2], P[X ≥ 3] and P[X ≥ 4].

Solution. First, we observe that E[X] = 2. Then

P[X ≥ 2] = 0.5,
E[X]

2
= 1,

P[X ≥ 3] = 0.25,
E[X]

3
= 0.67,

P[X ≥ 4] = 0,
E[X]

4
= 0.5.

Therefore, although the upper bounds are all valid, they are very loose.

The next inequality is a simple extension of Markov’s inequality. The result is known as Chebyshev’s
inequality. Chebyshev’s inequality states that this tail probability is upper-bounded by Var[X]/ε2.

Theorem 2 (Chebyshev’s inequality). Let X be a random variable with mean µ. Then for any ε > 0
we have

P[|X − µ| ≥ ε] ≤ Var[X]

ε2
. (5)

Proof. We apply Markov’s inequality to show that

P[|X − µ| ≥ ε] = P[(X − µ)2 ≥ ε2] ≤ E[(X − µ)2]

ε2
=

Var[X]

ε2
.

Example 2. Let X ∼ Uniform(0, 2
√
2). Find the bound of Chebyshev’s inequality for the probability

P[|X − µ| ≥ 1].

Solution. Note that E[X] = 2 and σ2 = (2
√
2)2/12 = 2/3. Therefore, we have

P[|X − µ| ≥ 1] ≤ σ2

ε2
=

2

3
,

which is a valid upper bound, but not very useful.

Example 3. Let X ∼ Exponential(1). Find the bound of Chebyshev’s inequality for the probability
P[X ≥ ε].

Solution. Note that E[X] = 1 and σ2 = 1. Thus we have

P[X ≥ ε] = P[X − µ ≥ ε− µ] ≤ P[|X − µ| ≥ ε− µ] ≤ σ2

(ε− µ)2
=

1

(ε− 1)2
.

We can compare this with the exact probability, which is

P[X ≥ ε] = 1− FX(ε) = e−ε.

Again, the estimate given by Chebyshev’s inequality is acceptable but too conservative.

© 2023 Stanley Chan. All Rights Reserved. 10

Corollary 1. Let X1, . . . , XN be i.i.d. random variables with mean E[Xn] = µ and variance Var[Xn] =

σ2. Let XN = 1
N

∑N
n=1 Xn be the sample mean. Then

P
[∣∣XN − µ

∣∣ > ϵ

]
≤ σ2

Nϵ2
. (6)

Proof. We can first show that E[XN] = µ and Var[XN] satisfies

Var[XN] =
1

N2

N∑
n=1

Var[Xn] =
σ2

N
.

Then by Chebyshev’s inequality,

P
[∣∣XN − µ

∣∣ > ϵ

]
≤ Var[XN]

ϵ2
=

σ2

Nϵ2
.

□
The consequence of this corollary is that the upper bound σ2N/ϵ2 will converge to zero as N → ∞.

Therefore, the probability of getting the event {
∣∣XN − µ

∣∣ > ϵ} is vanishing. It means that the sample average

XN is converging to the true population mean µ, in the sense that the probability of failing is shrinking.

2.4 Chernoff bound

We now introduce a powerful inequality or a set of general procedures that gives us some highly useful
inequalities. The idea is named for Herman Chernoff, although it was actually due to his colleague Herman
Rubin.

Theorem 3 (Chernoff’s bound). Let X be a random variable. Then, for any ε ≥ 0, we have that

P[X ≥ ε] ≤ e−φ(ε), (7)

wherea

φ(ε) = max
s>0

{
sε− logMX(s)

}
, (8)

and MX(s) is the moment-generating function.

aφ(ε) is called the Fenchel-Legendre dual function of logMX . See references [6-14].

Proof. There are two tricks in the proof of Chernoff’s bound. The first trick is a nonlinear transformation.
Since esx is an increasing function for any s > 0 and x, we have that

P[X ≥ ε] = P[esX ≥ esε]

(a)

≤ E[esX]

esε

(b)
= e−sεMX(s)

= e−sε+logMX(s),

where the inequality (a) is due to Markov’s inequality. Step (b) just uses the definition of MGF that
E[esX] = MX(s).

Now for the second trick. Note that the above result holds for all s. That means it must also hold for
the s that minimizes e−sε+logMX(s). This implies that

P[X ≥ ε] ≤ min
s>0

{
e−sε+logMX(s)

}
.

© 2023 Stanley Chan. All Rights Reserved. 11

Again, since ex is increasing, the minimizer of the above probability is also the maximizer of this function:

φ(ε) = max
s>0

{
sε− logMX(s)

}
.

Thus, we conclude that P[X ≥ ε] ≤ e−φ(ε).
□

Let’s consider an example of how Chernoff’s bound can be useful. Suppose that we have a random
variable X ∼ Gaussian(0, σ2/N). The number N can be regarded as the number of samples. For example, if

Y1, . . . , YN are N Gaussian random variables with mean 0 and variance σ2, then the average X = 1
N

∑N
n=1 Yn

will have mean 0 and variance σ2/N . Therefore, as N grows, the variance of X will become smaller and
smaller.

First, since the random variable is Gaussian, we can show the following:

Lemma 1. Let X ∼ Gaussian(0, σ2

N) be a Gaussian random variable. Then, for any ε > 0,

P[X ≥ ε] = 1− Φ

(√
Nε

σ

)
, (9)

where Φ is the standard Gaussian’s CDF.

Note that this is the exact result: If you tell me ε, N , and σ, then the probability P[X ≥ ε] is exactly the
one shown on the right-hand side. No approximation, no randomness.
Proof. Since X is Gaussian, the probability is

P[X ≥ ε] =

∫ ∞

ε

1√
2π(σ2/N)

exp

{
− x2

2(σ2/N)

}
dx

= 1−
∫ ε

−∞

1√
2π(σ2/N)

exp

{
− x2

2(σ2/N)

}
dx

= 1−
∫ ε√

σ2/N

−∞

1√
2π

exp

{
−x2

2

}
dx

= 1− Φ

(
ε√
σ2/N

)
= 1− Φ

(√
Nε

σ

)
.

□
Let us compute the bound given by Chebyshev’s inequality.

Lemma 2. Let X ∼ Gaussian(0, σ2

N) be a Gaussian random variable. Then, for any ε > 0, Chebyshev’s
inequality implies that

P[X ≥ ε] ≤ σ2

Nε2
. (10)

Proof. We apply Chebyshev’s inequality by assuming that µ = 0:

P[X ≥ ε] = P[X − µ ≥ ε− µ] ≤ P[|X − µ| ≥ ε− µ]

≤ E[(X − µ)2]

(ε− µ)2
=

σ2

Nε2
.

□
We now compute Chernoff’s bound.

© 2023 Stanley Chan. All Rights Reserved. 12

Theorem 4. Let X ∼ Gaussian(0, σ2

N) be a Gaussian random variable. Then, for any ε > 0, Chernoff’s
bound implies that

P [X ≥ ε] ≤ exp

{
−ε2N

2σ2

}
. (11)

Proof. The MGF of a zero-mean Gaussian random variable with variance σ2/N is MX(s) = exp
{

σ2s2

2N

}
.

Therefore, the function φ can be written as

φ(ε) = max
s>0

{
sε− logMX(s)

}
= max

s>0

{
sε− σ2s2

2N

}
.

To maximize the function we take the derivative and set it to zero. This yields

d

ds

{
sε− σ2s2

2N

}
= 0 ⇒ s∗ =

Nε

σ2
.

Note that this s∗ is a maximizer because sε− σ2s2

2N is a concave function.
Substituting s∗ into φ(ε),

φ(ε) = max
s>0

{
sε− σ2s2

2N

}
= s∗ε− σ2(s∗)2

2N
=

(
Nε

σ2

)
ε− σ2

2N

(
Nε

σ2

)2

=
ε2N

2σ2
,

and hence

P[X ≥ ε] ≤ e−φ(ε) = exp

{
−ε2N

2σ2

}
.

□

2.5 Hoeffding inequality

Chernoff’s bound can be used to derive many powerful inequalities. Here we present an inequality for
bounded random variables. This result is known as Hoeffding’s inequality.

Theorem 5 (Hoeffding’s inequality). Let X1, . . . , XN be i.i.d. random variables with 0 ≤ Xn ≤ 1,
and E[Xn] = µ. Then

P
[∣∣XN − µ

∣∣ > ϵ

]
≤ 2e−2ϵ2N , (12)

where XN = 1
N

∑N
n=1 Xn.

You may skip the proof of Hoeffding’s inequality.

Proof. (Hoeffding’s inequality) First, we show that

P
[
XN − µ > ϵ

]
= P

[
1

N

N∑
n=1

Xn − µ > ϵ

]
= P

[
N∑

n=1

(Xn − µ) > Nϵ

]
= P

[
es

∑N
n=1(Xn−µ) ≥ esϵN

]
≤ E[es

∑N
n=1(Xn−µ)]

esϵN
=

(
E[es(Xn−µ)]

esϵ

)N

.

© 2023 Stanley Chan. All Rights Reserved. 13

Let Zn = Xn − µ. Then −µ ≤ Zn ≤ 1 − µ. At this point we use Hoeffding Lemma (see below) that

E[esZn] ≤ e
s2

8 because b− a = (1− µ)− (−µ) = 1. Thus,

P
[
XN − µ > ϵ

]
≤
(
E[esZn]

esϵ

)N

≤

(
e

s2

8

esϵ

)N

= e
s2N
8 −sϵN , ∀s.

This result holds for all s, and thus it holds for the s that minimizes the right-hand side. This implies that

P
[
XN − µ > ϵ

]
≤ min

s

{
exp

{
s2N

8
− sϵN

}}
.

Minimizing the exponent gives d
ds

{
s2N
8 − sϵN

}
= sN

4 − ϵN = 0. Thus we have s = 4ϵ. Hence,

P
[
XN − µ > ϵ

]
≤ exp

{
(4ϵ)2N

8
− (4ϵ)ϵN

}
= e−2ϵ2N .

By symmetry, P
[
XN − µ < −ϵ

]
≤ e−2ϵ2N . Then by union bound we show that

P
[
|XN − µ| > ϵ

]
= P

[
XN − µ > ϵ

]
+ P

[
XN − µ < −ϵ

]
≤ e−2ϵ2N + e−2ϵ2N

= 2e−2ϵ2N . □

Lemma 3 (Hoeffding’s lemma). Let a ≤ X ≤ b be a random variable with E[X] = 0. Then

MX(s)
def
= E

[
esX

]
≤ exp

{
s2(b− a)2

8

}
. (13)

Proof. Since a ≤ X ≤ b, we can write X as a linear combination of a and b:

X = λb+ (1− λ)a,

where λ = X−a
b−a . Since exp(·) is a convex function, it follows that eλb+(1−λ)a ≤ λeb + (1− λ)ea. (Recall that

h is convex if h(λx+ (1− λ)y) ≤ λh(x) + (1− λ)h(y).) Therefore, we have

esX ≤ λesb + (1− λ)esa

=
X − a

b− a
esb +

b−X

b− a
esa.

Taking expectations on both sides of the equation,

E[esX] ≤ −a
b− a

esb +
b

b− a
esa,

because E[X] = 0. Now, if we let θ = − a
b−a , then

−a
b− a

esb +
b

b− a
esa = θesb + (1− θ)esa

= esa
(
1− θ + θes(b−a)

)
=
(
1− θ + θes(b−a)

)
e−sθ(b−a)

= (1− θ + θeu) e−θu = e−θu+log(1−θ+θeu),

where we let u = s(b− a). This can be simplified as E[esX] ≤ E[eϕ(u)] by defining

ϕ(u) = −θu+ log(1− θ + θeu).

© 2023 Stanley Chan. All Rights Reserved. 14

The final step is to approximate ϕ(u). To this end, we use Taylor approximation:

ϕ(u) = ϕ(0) + uϕ′(0) +
u2

2
ϕ′′(ξ),

for some ξ ∈ [a, b]. Since ϕ(0) = 0, ϕ′(0) = 0, and ϕ′′(u) ≤ 1
4 for all u, it follows that

ϕ(u) =
u2

2
ϕ′′(ξ) ≤ u2

8
=

s2(b− a)2

8
. □

End of the proof.

What is so special about the Hoeffding’s inequality?

� Since Hoeffding’s inequality is derived from Chernoff’s bound, it inherits the tightness. Hoeffd-
ing’s inequality is much stronger than Chebyshev’s inequality in bounding the tail distributions.

� Hoeffding’s inequality is one of the few inequalities that do not require E[X] and Var[X] on the
right-hand side.

� A downside of the inequality is that boundedness is not always easy to satisfy. For example, if Xn

is a Gaussian random variable, Hoeffding does not apply. There are more advanced inequalities
for situations like these.

Figure 10: Comparing Hoeffding inequality and Chebyshev inequality to predict the actual probability
bound.

Let us take a quick comparison between the Hoeffding inequality and the Chebyshev inequality. Cheby-
shev inequality states that

P

[∣∣∣∣∣ 1N
N∑

n=1

Xn − µ

∣∣∣∣∣ > ϵ

]
≤ σ2

ϵ2N
. (14)

If we let 2e−2ϵ2N ≤ δ for some δ in Hoeffding inequality, and σ2

ϵ2N for some δ in Chebyshev inequality, we
can easily see that the two inequalities imply

N ≥ − 1

2ϵ2
log

δ

2
, and N ≥ σ2

ϵ2δ
.

For simplicity let us assume that σ = 1, ϵ = 0.1 and δ = 0.01. Then the above calculation will give N ≥ 265
for Hoeffding whereas N ≥ 10000 for Chebyshev. That means, Hoeffding inequality has a much lower
prediction of how many samples we need to achieve an error of δ ≤ 0.01.

© 2023 Stanley Chan. All Rights Reserved. 15

The Hoeffding inequality implies the following result in learning. Substituting the in-sample error
Ein(h) and out-sample error Eout(h) into the inequality, we can show that

P [|Ein(h)− Eout(h)| > ϵ] ≤ 2e−2ϵ2N . (15)

As the number of training samples N grows, the in-sample error Ein(h) (which is the training error)
converges to the out-sample error Eout(h) (which is the testing error). The in-sample error Ein(h) is
something we can compute numerically using the training set. The out-sample error is an unknown quantity
because we do not know the target function f . Hoeffding inequality says even though we do not know
Eout(h), for large enough N the in-sample error Ein(h) will be sufficiently close to Eout(h). Therefore, we
will be able to tell how good the hypothesis function is without accessing the unknown target function.

2.6 PAC framework

The probabilistic analysis is called a probably approximately correct (PAC) framework. The word P-A-C
comes from three principles of the Hoeffding inequality:

� Probably: We use the probability

P
[
|Ein(h)− Eout(h)| > ϵ

]
≤ 2e−2ϵ2N (16)

as a measure to quantify the error.

� Approximately: The in-sample error is an approximation of the out-sample error, as given by

P [|Ein(h)− Eout(h)| > ϵ] ≤ 2e−2ϵ2N . (17)

The approximation error is controlled by ϵ.

� Correct: The error is bounded by the right hand side of the Hoeffding inequality:

P [|Ein(h)− Eout(h)| > ϵ]≤ 2e−2ϵ2N . (18)

The accuracy is controlled by N for a fixed ϵ.

Now, there is one last problem we need to resolve. The above Hoeffding inequality holds for a fixed
hypothesis function h. This means that h is already chosen before we generate the dataset. If we allow h to
change after we have generated the dataset, then the Hoeffding inequality is no longer valid. What do we
mean by after generating the dataset? In any learning scenario, we are given a training dataset D. Based
on this dataset, we have to choose a hypothesis function g from the hypothesis set H. The hypothesis g we
choose depends on what samples are inside D and which learning algorithm A we use. So g changes after
the dataset is generated.

Why is Hoeffding inequality invalid if we use g instead of h? Suppose thatH containsM hypothesis func-
tions h1, . . . , hM . The final hypothesis g is one of these potential hypotheses. To have |Ein(g)− Eout(g)| > ϵ,
we need to ensure that at least one of the M potential hypotheses can satisfy the inequality. This implies
that

|Ein(g)− Eout(g)| > ϵ =⇒ |Ein(h1)− Eout(h1)| > ϵ

or |Ein(h2)− Eout(h2)| > ϵ

. . .

or |Ein(hM)− Eout(hM)| > ϵ.

© 2023 Stanley Chan. All Rights Reserved. 16

As a result, we can show that

P
{
|Ein(g)− Eout(g)| > ϵ

} (a)

≤ P
{
|Ein(h1)− Eout(h1)| > ϵ

or |Ein(h2)− Eout(h2)| > ϵ

. . .

or |Ein(hM)− Eout(hM)| > ϵ
}

(b)

≤
M∑

m=1

P
{
|Ein(hm)− Eout(hm)| > ϵ

}
,

where (a) holds because P[A] ≤ P[B] if A ⇒ B, and (b) is the Union bound which says P[A or B] ≤
P[A] + P[B]. Therefore, if we bound each hm using the Hoeffding inequality

P
{
|Ein(hm)− Eout(hm)| > ϵ

}
≤ 2e−2ϵ2N ,

then the overall bound on g is the sum of the M terms.

Theorem 6. Consider a learning problem where we have a dataset D = {x1, . . . ,xN}, and a hypothesis
set H = {h1, . . . , hM}. Suppose g is the final hypothesis picked by the learning algorithm. Then, for
any ϵ > 0,

P
{
|Ein(g)− Eout(g)| > ϵ

}
≤ 2Me−2ϵ2N . (19)

Significance of the Theorem:

Message 1: You can bound Eout(h) using Ein(h).

� Ein(h): You know. Eout(h): You don’t know, but you want to know.

� They are close if N is large.

Message 2: The right hand side is independent of h and p(x)

� So it is a universal upper bound

� Works for any A, any H, any f , and any p(x)

The deterministic analysis shows that learning is infeasible, whereas the probabilistic analysis shows
that learning is feasible. Are they contradictory? If we look at them closely, we realize that there is in fact
no contradiction. Here are the reasons.

1. Guarantee and Possibility. If we want a deterministic answer, then the question we ask is “Can D
tell us something certain about f outside D?” In this case the answer is no because if we have not seen
the example, there is always uncertainty about the true f . If we want a probabilistic answer, then the
question we ask is “Can D tell us something possibly about f outside D?” In this case the answer is
yes.

2. Role of the distribution. There is one common distribution pX(x) which generates both the in-
samples and the out-samples. Thus, whatever pX we use to generate D, we must use it to generate the
testing samples. The testing samples are not inside D, but they come from the same distribution. Also,
all samples are generated independently, so that we have i.i.d. when using the Hoeffding inequality.

© 2023 Stanley Chan. All Rights Reserved. 17

3. Learning goal. The ultimate goal of learning is to make Eout(g) ≈ 0. However, in order establish
this result, we need two levels of approximation:

Eout(g) ≈x
Hoeffding Inequality

Ein(g) ≈x
Training Error

0 (20)

The first approximation is made by the Hoeffding inequality, which ensures that for sufficiently large
N , we can approximate the out-sample error by the examples in D. The second approximation is to
make the in-sample error, i.e., the training error, small. This requires a good hypothesis and a good
learning algorithm.

The result in (20) tells us something about the complexity of the hypothesis set H and the target
function f .

� More complex H ? If H is complex with a large M , then the approximation by the Hoeffding
inequality becomes loose. Remember, Hoeffing inequality states that

P
{
|Ein(g)− Eout(g)| > ϵ

}
≤ 2Me2ϵ

2N .

As M grows, the upper bound on the right hand side becomes loose, and so we will run into risk where
Ein(g) can deviate from Eout(g). However, if M is large, we have more candidate hypotheses to choose
from and so the second approximation about the training error will go down. This gives the following
relationship.

Eout(g) ≈x
worse if H complex

Ein(g) ≈x
good if H complex

0

Where is the optimal trade-off? This requires more investigation.

� More complex f? If the target function f is complex, we will suffer from being not able to push
the training error down. This makes Ein(g) ≈ 0 difficult. However, since the complexity of f has
no influence to the Hoeffding inequality, the first approximation Ein(g) ≈ Eout(g) is unaffected. This
gives us

Eout(g) ≈x
no effect by f

Ein(g) ≈x
worse if f complex

0

Trying to improve the approximation Ein(g) ≈ 0 by increasing the complexity of H needs to pay a
price. If H becomes complex, then the approximation Ein(g) ≈ Eout(g) will be hurt.

© 2023 Stanley Chan. All Rights Reserved. 18

3 VC Analysis

The objective of this section is go further into the analysis of the Hoeffding inequality to derive something
called the generalization bound. There are two parts of our discussion. The first part is easy, which is
to rewrite the Hoeffding inequality into a form of “confidence interval” or “error bar”. This will allow us
interpret the result better.

The second part is to replace the constant M in the Hoeffding inequality by something smaller. This
will allow us derive something more meaningful. Why do we want to do that? What could go wrong with
M? Remember that M is the number of hypotheses in H. If H is a finite set, then everything is fine because
the exponential decaying function of the Hoeffding inequality will override the constant M . However, for any
practical H, M is infinite. Think of a perceptron algorithm. If we slightly perturb the decision boundary by
an infinitesimal translation, we will get an infinite number of hypotheses, although these hypotheses could
be very similar to each other. If M is infinite, then the probability bound offered by the Hoeffding inequality
can potentially be bigger than 1 which is valid but meaningless. To address this issue we need to learn a
concept called the VC dimension.

3.1 Generalization bound

Let us start with the Hoeffding inequality:

P
{
|Ein(g)− Eout(g)| > ϵ

}
≤ 2Me−2ϵ2N .

Notice that this inequality is written in terms of ϵ. We want to rewrite the inequality as

P
{
|Ein(g)− Eout(g)| > ϵ

}
︸ ︷︷ ︸

P[B]

≤ 2Me−2ϵ2N︸ ︷︷ ︸
δ

.

for some event B (the Bad event). This is equivalent to say that B happens with a tiny probability δ.
Let’s rewrite equation further by rewriting

P
{
|Ein(g)− Eout(g)| > ϵ

}
≤ δ

as the following:

P
{
|Ein(g)− Eout(g)| ≤ ϵ

}
≥ 1− δ.

This can be read as

with probability 1− δ, Ein(g)− ϵ ≤ Eout(g) ≤ Ein(g) + ϵ.

If we can express ϵ in terms of δ, then we will arrive our goal of rewriting the Hoeffding inequality. How
about we substitute δ = 2Me−2ϵ2N , which is the upper bound on the right hand side. By rearrange the
terms, we can show that

δ = 2Me−2ϵ2N ⇐⇒ ϵ =

√
1

2N
log

2M

δ
. (21)

Therefore, we arrive at the following inequality.

Theorem 7. Consider a learning problem where we have a dataset D = {x1, . . . ,xN}, and a hypothesis
set H = {h1, . . . , hM}. Suppose g is the final hypothesis picked by the learning algorithm. Then, with
probability at least 1− δ,

Ein(g)−
√

1

2N
log

2M

δ
≤ Eout(g) ≤ Ein(g) +

√
1

2N
log

2M

δ
. (22)

The inequality given by (22) is called the generalization bound, which we can consider it as an “error
bar”. There are two sides of the generalization bound:

© 2023 Stanley Chan. All Rights Reserved. 19

� Eout(g) ≤ Ein(g) + ϵ (Upper Bound). The upper bound gives us a safe-guard of how worse Eout(g)
can be compared to Ein(g). It says that the unknown quantity Eout(g) will not be significantly higher
than Ein(g). The amount is specified by ϵ.

� Eout(g) ≥ Ein(g) + ϵ (Lower Bound). The lower bound tells us what to expect. It says that the
unknown quantity Eout(g) cannot be better than Ein(g)− ϵ.

3.2 Dichotomy

To make sense of the generalization bound, we need to ensure that ϵ→ 0 as N →∞. In doing so, we need
to assume that M does not grow exponentially fast, for otherwise term log 2M will cancel out the effect of
1/N . However, if H is an infinite set, then M is unavoidably infinite.

3.2.1 The problem of M

To resolve the issue of having an infinite M , we realize that there is a serious slack caused by the union bound
when deriving the Hoeffding inequality. If we look at the union bound, we notice that for every hypothesis
h ∈ H there is an event B = {|Ein(h)− Eout(h)| > ϵ}. If we have M of these hypotheses, the union bound
tells us that

P[B1 or . . . or BM] ≤ P[B1] + . . .+ P[BM].

The union bound is tight (“≤” is replaced by “=”) when all the events B1, . . . ,BM are not overlapping. But
if the events B1, . . . ,BM are overlapping, then the union bound is loose, in fact, very loose. Having a loose
bound does not mean that the bound is wrong. The bound is still correct, but the right hand side of the
inequality will be a severe overestimate of the left hand side. Will this happen in practice? Unfortunately
many hypotheses are indeed very similar to each other and so the events B1, . . . ,BM are overlapping. For
example, if we move the decision boundary returned by a perceptron algorithm by an infinitesimal step then
we will have infinitely many hypotheses, and everyone is highly dependent on each other.

We need some tools to handle the overlapping situation. To do so we introduce two concepts. The first
concept is called the dichotomy, and the second concept is called the growth function. Dichotomies will
define a growth function, and the growth function will allow us replace M by a much smaller quantity that
takes care of the overlapping issue.

3.2.2 Intuition

Consider the following situation. We have two hypothesis functions h1 and h2. They are not very different.
If we go from h1 to h2, two things will happen:

� There is a change of the out-sample error:

∆Eout = change in the +1 and -1 area.

Since h1 is close to h2, the change ∆Eout is very small.

© 2023 Stanley Chan. All Rights Reserved. 20

� There is a change of the in-sample error:

∆Ein = change in labels of the training samples.

We expect that ∆Ein also does not change much.

So we should expect the probabilities

P[|Ein(h1)− Eout(h1)| > ϵ] ≈ P[|Ein(h2)− Eout(h2)| > ϵ].

In other words, if we are inspecting two hypothesis functions, their “similarity” or “difference” can be
quantified. Even if we have an infinite set of hypothesis functions, we can “group” hypothesis functions
together. The question is how.

The idea to resolve the “M problem” is to look at the input space. Consider the class of linear classifiers.
For a 2D problem, the decision boundaries are shown on the left hand side of the figure below. Remember
that there are infinitely many of these hypothesis functions. As we assign the labels to the half spaces, we
can see that the hypothesis functions have partitioned the input space into two half-spaces.

The magic happens when we consider the training samples. For a set of fixed training samples, different
hypothesis functions will be able to group the training samples. For example, we can have two on the left
and one on the right, or two on the top and one at the bottom (See Figure above). But we notice one thing:
if two hypothesis functions are very close, then their effect to the training samples is none. The effect will be
here only when one training sample flips it label. Therefore, if we count the number of unique hypothesis
functions, we can reduce the effective number of hypothesis functions.

3.2.3 Definition

Consider a dataset containing N data points x1, . . . ,xN . Pick a hypothesis h from the hypothesis set H,
and for simplicity assume that the hypothesis is binary: {+1,−1}. If we apply h to (x1, . . . ,xN), we will get
a N -tuple (h(x1), . . . , h(xN)) of ±1’s. Each N -tuple is called a dichotomy. The collection of all possible
N -tuples (by picking all h ∈ H) is defined as H(x1, . . . ,xN). For example, if H contains two hypotheses hα

© 2023 Stanley Chan. All Rights Reserved. 21

and hβ such that hα turns all training samples xn to +1 and hβ turns all training samples xn to −1, then
we have two dichotomies and H(x1, . . . ,xN) is defined as

H(x1, . . . ,xN) =
{(

hα(x1), . . . , hα(xN)
)
,
(
hβ(x1), . . . , hβ(xN)

)}
=
{(

+ 1, . . . ,+1
)
,
(
− 1, . . . ,−1

)}
.

More generally, the definition of H(x1, . . . ,xN) is as follows.

Definition 3. Let x1, . . . ,xN ∈ X . The dichotomies generated by H on these points are

H(x1, . . . ,xN) = {(h(x1), . . . , h(xN)) | h ∈ H} . (23)

The above definition suggests that H(x1, . . . ,xN) is a function depending on the training samples
x1, . . . ,xN . Therefore, a different set of {x1, . . . ,xN} will give a different H(x1, . . . ,xN). However, since
H(x1, . . . ,xN) is a binary N -tuple, there will be identical sequences of ±1’s in H(x1, . . . ,xN).

The table below shows the difference between a hypothesis and a dichotomy. In brief, there could be
an infinite number of hypothesis functions because a hypothesis is defined by the entire input space. The
set of dichotomies is usually much smaller because a dichotomy is defined by the training set. If we have
finite number of training samples, the number of dichotomies will also be smaller.

Hypothesis Dichotomy

h : X → {+1,−1} h : {x1, . . . ,xN} → {+1,−1}
for all population samples for training samples only
number can be infinite number is at most 2N

Here is an example where the two hypothesis functions are different, but there is only one dichotomy.

3.3 The growth function

3.3.1 Counting the number of dichotomies

Suppose there are N = 3 data points in X so that we have x1,x2,x3. Use any method to build a linear
classifier (could be a linear regression of a perceptron algorithm). Since there are infinitely many lines we
can draw in the 2D plane, the hypothesis set H contains infinitely many hypotheses.

Now, let us assume that the training data x1,x2,x3 are located at position A, B, C respectively, as
illustrated in Figure 11. These locations are fixed, and the 3 data points x1,x2,x3 must stay at these three
locations. For this particular configuration of the locations, we can make as many as 23 = 8 dichotomies.
Notice that one dichotomy can still have infinitely many hypotheses. For example in the top left case of
Figure 11, we can move the yellow decision boundary up and low slightly, and we will still get the same
dichotomy of [−1, −1, −1]. However, as we move the decision boundary away by changing the slope and
intercept, we will eventually land on a different dichotomy, e.g., [−1, +1, −1] as shown in the bottom left of
Figure 11. As we move around the decision boundary, we can construct at most 8 dichotomies for x1,x2,x3

located at A, B and C.

© 2023 Stanley Chan. All Rights Reserved. 22

Figure 11: Example of number of dichotomies.

What if we move x1,x2,x3 to somewhere else, for example the locations specified by Figure 12? In this
case some dichotomies are not allowed, e.g., the cases of [+1, −1, +1] and [−1, +1, −1] are not allowed
because our hypothesis set contains only linear models and a linear model is not able to cut through 3 data
points of alternating classes with a straight line. We can still get the remaining six configurations, but the
total will be less than 8. The total number of dichotomies here is 6.

Figure 12: Example of number of dichotomies.

3.3.2 Growth function

Now we want to define a quantity that measures the number of dichotomies. This quantity should be
universal for any configuration of x1, . . . ,xN , and should only be a function of H and N . If we can obtain
such quantity, then we will have a way to make a better estimate than M . To eliminate the dependency
on x1, . . . ,xN , we realize that among all the possible configurations of x1, . . . ,xN , there exists one that can
maximize the size of H(x1, . . . ,xN). Define this maximum as the growth function.

Definition 4. The growth function for a hypothesis set H is the maximum number of dichotomies we
can possibly assign by moving around the training samples. It is defined as

mH(N) = max
x1,...,xN∈X

|H(x1, . . . ,xN)|, (24)

where | · | denotes the cardinality of a set.

Example 1. Consider three training samples in a 2D space. Suppose we choose a linear model as the
classifier. The growth number, i.e, mH(3), is 8. This is because if we configure x1,x2,x3 like the ones in
the green part of Figure 11, we will get 8 dichotomies. Of course, if we land on the red case we will get
6 dichotomies only. However, since the definition of mH(3) asks for the maximum, we conclude that the
growth number is 8.

© 2023 Stanley Chan. All Rights Reserved. 23

Example 2. How about mH(N) when N = 4? It turns out that there are at most 14 dichotomies no
matter where we put the four data points x1,x2,x3,x4.

Example 3. In this example we consider a set of data points sitting on a 1D line. The hypothesis set
is an indicator function that has a cutoff point a such that

h(x) = sign(x− a).

Thus, if a training sample lives on the right hand side of a, the label will be +1. Otherwise the label will be
−1. The hypothesis function will cut the real line into two halves.

For this problem, the number of dichotomies is determined by the number of cuts we can possible make.
If we have N points, then we have N + 1 cuts. So the maximum number of dichotomies is N + 1. This will
give us the growth function.

© 2023 Stanley Chan. All Rights Reserved. 24

Example 4. This example is similar to the previous example, with the exception that now the
hypothesis does not cut the real line into two halves. It segments the real line with an interval.

To determine the number of dichotomies, we notice that an interval is specified by the start point and
the end point. Since there are N +1 possible locations we can put a cut, and since we need to put two cuts,
the number of dichotomies boils down to

mH(N) =

(
N + 1

2

)
.

3.4 VC dimension

3.4.1 Shatter

So what is the difference between mH(N) and M? Both are measures of the number of hypotheses. However,
mH(N) is measured from the N training samples in X whereas M is the number of hypotheses we have in
H. The latter could be infinite, the former is upper bounded (at most) 2N . Why 2N? Suppose we have N
data points and the hypothesis is binary. Then the set of all dichotomies H(x1, . . . ,xN) must be a subset in
{+1,−1}N , and hence there are at most 2N dichotomies:

mH(N) ≤ 2N .

What is shatter?

If a hypothesis setH is able to generate all 2N dichotomies, then we say thatH shatter x1, . . . ,xN .

For example, a 2D perceptron algorithm is able to shatter 3 data points because mH(3) = 23. However,
the same 2D perceptron algorithm is not able to shatter 4 data points because mH(4) = 14 < 24.

3.4.2 VC dimension

We are now at the last step of our analysis. Let us start by looking at what we can do with the growth
function. The most straight forward step is to replace M by mH(N):

Ein(g)−
√

1

2N
log

2mH(N)

δ
≤ Eout(g) ≤ Ein(g) +

√
1

2N
log

2mH(N)

δ
.

Since we know that mH(N) ≤ 2N , a natural attempt is to upper bound mH(N) by 2N . However, this will
not help us because √

1

2N
log

2mH(N)

δ
≤
√

1

2N
log

2(2N)

δ
=

√
1

2N
log

2N+1

δ
.

For large N we can approximate 2N+1 ≈ 2N , and so

1

2N
log

2N

δ
≈ N log 2− log δ

2N
=

log 2

2
− log δ

2N
→ (log 2)/2.

© 2023 Stanley Chan. All Rights Reserved. 25

Therefore, asN →∞, the error bar will never approach zero but to a constant. This makes the generalization
fail.

Can we find a better upper bound on mH(N) so that we can send the error bar to zero as N grows?
Here we introduce a parameter allows us to characterize the growth function.

Definition 5 (VC Dimension). The Vapnik-Chervonenkis dimension of a hypothesis set H, denoted
by dVC, is the largest value of N for which mH(N) = 2N .

The way to think about the VC dimension can be summarized in the bullet points below:

3.4.3 VC dimension of a Perceptron algorithm

To give readers a non-trivial example, we consider the VC dimension of a perceptron algorithm.

Theorem 8 (VC Dimension of Perceptron). Consider the input space X = Rd∪{1}. The VC dimension
of the perceptron algorithm is

dVC = d+ 1. (25)

First of all, what is a perceptron algorithm? Perceptron algorithm is nothing but a linear model
obtained through a special algorithm. So, it should inherent all the properties of a linear model. The
dimension d, if you recall, is the number of parameters in the input vector x. But since x = [x1, . . . , xd, 1]

T ,
the dimension of x is d+ 1.

Intuition. The way to think about the VC dimension of the perceptron algorithm is to ask yourself: If
we have N = 3 data points, can a linear model with an order d = 2 shatter the three data points. If N = 4,
can we do it with d = 3? And so on.

Suppose that d = 2, so we are considering a 2D perceptron. Let’s ask ourselves two cases:

� N = 3. Recall that mH(3) is the maximum number of dichotomies that can be generated by a
hypothesis set under N = 3 data points. As we have shown earlier, as long as the 3 data points are not
on a straight line, it is possible to draw 8 different dichotomies. If the 3 data points are on a straight
line, we can only generate 6 dichotomies. However, since mH(3) picks the maximum, we have that
mH(3) = 23. Therefore, a 2D percetpron can shatter 3 data points.

� N = 4. As we have discussed earlier, if we have N = 4 data points, there are always 2 dichotomies
that cannot be generated by the perceptron algorithm. This implies that the growth function is
mH(4) = 14 < 24. Since the perceptron algorithm can shatter N = 3 data points but not N = 4 data
points, the VC dimension is dVC = 3.

© 2023 Stanley Chan. All Rights Reserved. 26

The following proof can be skipped.

Proof of Theorem. We shall prove that dVC ≥ d + 1 and dVC ≤ d + 1. To prove dVC ≥ d + 1, we
ask: Can we shatter d + 1 data points by a d-dimensional perceptron algorithm? Note that here we are
only trying to show that it is possible to shatter d + 1 data points. Begin “possible” means that we can
guaranteed to be able to shatter up to d+ 1 data points. Since dVC is the next number that the algorithm
cannot shatter, by proving this result we can claim that dVC is at least d+ 1. Whether it can go to d+ 2 is
to be determined.

Since our goal is to show dVC ≥ d + 1, we just need to pick a configuration (i.e., d + 1 data points)
such that the perceptron algorithm can shatter. To this end we choose x1, . . . ,xd+1 by defining xn =
[1, 0, . . . , 1, . . . , 0]T , i.e., 1 on the first entry and a standard basis vector on the rest. Geometrically, if we
ignore the bias term (i.e., the first entry of each vector xn), then the data points live on the vertices of a
d-dimensional cube. We want to show that this configuration can be shattered by the perceptron algorithm.

Recall that a perceptron algorithm makes a decision by checking

sign(xT
nw)

?
= yn,

where yn ∈ {+1,−1} is a binary decision. Our question can be formulated as: Is it possible to find a vector
w such that

sign(xT
1 w) = y1

...

sign(xT
d+1w) = yd+1

If we can find w, then that means we can shatter the d+ 1 data points.
The first thing we realize is that the sign operator does not matter as far as finding a w. If we solve

the above system of equations without the sign, and if we obtain a w that flips the sign of one of the rows,
then the w we found is not able to shatter. But if the w we found can still fit all the d+ 1 equations, then
we can safely remove the sign and prove that the d+1 data points are shattered. Therefore, to this end, we
consider a simpler problem.

−xT
1−

−xT
2−
...

−xT
d+1−

w0

w1

...
wd

 =

1 0 0 . . . 0
1 1 0 . . . 0
1 0 1 0

. . . 0
1 0 . . . 0 1

w0

w1

...
wd

 =

y1
y2
...

yd+1

 =

±1
±1
...
±1

We ask: Is this system of linear equations solvable? This in turns asks: Is the (d + 1) × (d + 1) matrix
invertible? And clearly the matrix is invertible. Therefore, we will be able to find w for any given y, and
hence we prove that dVC ≥ d+ 1.

For the other direction to show that dVC ≤ d+ 1, we need to show that we are not able to shatter any
set of d+ 2 data points. Suppose we have d+ 2 data points x1, . . . ,xd+1,xd+2, we can write

xd+2 =

d+1∑
j=1

αjxj .

Construct a dichotomy with labels

yi =

{
sign(αi), i = 1, . . . , d+ 1,

−1, i = d+ 2.

Assume that all labels correct so that sign(αi) = sign(wTxi) for i = 1, . . . , d + 1. This implies that
αT
i w

Txi > 0 for all i = 1, . . . , d+1. Because of the linear combination, we also have that wTxd+2 > 0. But
yd+2 = sign(wTxd+2) = −1. So there is a contradiction. Therefore, we cannot shatter d + 2 data points
using a d-dimensional perceptron algorithm. This completes the proof. □

© 2023 Stanley Chan. All Rights Reserved. 27

3.5 Bounding the growth function

3.5.1 Tightening the generalization bound

Now that we have the VC dimension, we can bound the growth function. The following theorem show that
mH(N) is indeed upper bounded by a polynomial of order no greater than dVC.

Theorem 9. Let dVC be the VC dimension of a hypothesis set H, then

mH(N) ≤
dVC∑
i=0

(
N

i

)
. (26)

We shall skip the proof which can be found in Theorem 2.4 of Learning from Data. The polynomial bound
comes from the following exercise.

Exercise. Prove by induction that
d∑

i=0

(
N

i

)
≤ Nd + 1.

Using this result, we can show that
mH(N) ≤ NdVC + 1.

If we substitute mH(N) by this upper bound NdVC + 1, then the generalization bound becomes

ϵ =

√
1

2N
log

2mH(N)

δ
≤
√

1

2N
log

2(NdVC + 1)

δ
. (27)

3.5.2 Interpreting the VC dimension

How do we interpret the VC dimension? The VC dimension can be informally viewed as the effective
number of parameters of a model. Higher VC dimension is means a more complex model, and hence
a more diverse hypothesis set H. As a result, the growth function mH(N) will be big. (Think about the
number of dichotomies that can be generated by a complex model versus a simple model, and hence the
overlap we encounter in the union bound.) There are two scenarios of the VC dimension.

� dVC <∞. This implies that the generalization error will go to zero as N grows:

ϵ =

√
1

2N
log

2(NdVC + 1)

δ
→ 0,

as N →∞ because (logN)/N → 0. If this is the case, then the final hypothesis g ∈ H will generalize.
Such generalization result holds independent of the learning algorithm A, independent of the input
distribution pX and independent of the target function f . It only depends on the hypothesis set H
and the training examples x1, . . . ,xN .

� dVC = ∞. This means that the hypothesis set His as diverse as it can be, and it is not possible to
generalize. The generalization error will never go to zero.

Are we all set about the generalization bound? It turns out that we need some additional technical
modifications to ensure the validity of the generalization bound. We shall not go into the details but just
state the result.

Theorem 10 (Generalization Bound). For any tolerance δ > 0

Eout(g) ≤ Ein(g) +

√
8

N
log

4mH(2N)

δ
, (28)

© 2023 Stanley Chan. All Rights Reserved. 28

with probability at least 1− δ.

3.5.3 Slackness in the generalization bound

The VC generalization bound in (28) is universal in the sense that it applies to all hypothesis set H, learning
algorithmA, input space X , distribution p, and binary target function f . So can we use the VC generalization
bound to predict the exact generalization error for any learning scenario? Unfortunately the answer is no.
The VC generalization bound we derived is a valid upper bound but also a very loose upper bound. The
loose-ness nature of the generalization bound comes from the following reasons (among others):

� The Hoeffding inequality has a slack. The inequality works for all values of Eout. However, the behavior
of Eout could be very different at different values, e.g., at 0 or at 0.5. Using one bound to capture both
cases will result in some slack.

� The growth function mH(N) gives the worst case scenario of how many dichotomies are there. If we
draw the N data points at random, it is unlikely that we will land on the worst case, and hence the
typical value of mH(N) could be far fewer than 2N even if mH(N) = 2N .

� Bounding mH(N) by a polynomial introduces further slack.

Therefore, the VC generalization bound can only be used a rough guideline of understanding how well the
learning algorithm generalize.

3.6 Sample and model complexity

The generalization bound helps us understand the sample and model complexity.

3.6.1 Sample complexity

Sample complexity concerns about the number of training samples N we need to achieve the generalization
performance. Recall from the generalization bound:

Eout(g) ≤ Ein(g) +

√
8

N
log

4mH(2N)

δ
.

Fix a δ > 0, if we want the generalization error to be at most ϵ, we can enforce that√
8

N
log

4mH(2N)

δ
≤ ϵ.

Rearranging the terms yields N ≥ 8
ϵ2 log

(
4mH(2N)

δ

)
. If we replace mH(2N) by the VC dimension, then we

obtain a similar bound

N ≥ 8

ϵ2
log

(
4(2N)dVC + 1

δ

)
.

Example. Suppose dVC = 3, ϵ = 0.1 and δ = 0.1 (90% confidence). The number of samples we need
satisfies the equation

N ≥ 8

0.12
log

(
4(2N)3 + 4

0.1

)
.

If we plug in N = 1000 to the right hand side, we will obtain

N ≥ 8

0.12
log

(
4(2× 1000)3 + 4

0.1

)
≈ 21, 193.

If we repeat the calculation by plugging in N = 21, 193, obtain a new N , and iterate, we will eventually
obtain N ≈ 30, 000. If dVC = 4, we obtain N ≈ 40, 000 samples. This means that every value of dVC

© 2023 Stanley Chan. All Rights Reserved. 29

corresponds to 10,000 samples. In practice, we may require significantly less number of samples. A
typical number of samples is approximately 10× dVC.

3.6.2 Model Complexity

The other piece of information that can be obtained from the generalization bound is how complex the model
could be. If we look at the generalization bound, we realize that the error ϵ is a function of N , H and δ:

Eout(g) ≤ Ein(g) +

√
8

N
log

4mH(2N)

δ︸ ︷︷ ︸
=ϵ(N,H,δ)

If we replace mH(2N) by (2N)dVC + 1, then we can write ϵ(N,H, δ) as

ϵ(N, dVC, δ) =

√
8

N
log

(
4 ((2N)dVC + 1)

δ

)
The three factors N , dVC and δ have different influence on the error ϵ:

� dVC: The VC dimension controls the complexity of the model. As dVC grows, the in-sample error
Ein drops because large dVC implies that we have a more complex model to fit the training data.
However, ϵ grows as dVC grows. If we have a very complex model, then it would be more difficult to
generalize to the out-samples. The trade-off between model complexity and generalization is shown
in Figure 13. The blue curve represents the in-sample error Ein which drops as dVC increases. The
red curve represents the model complexity which increases as dVC increases. The black curve is the
out-sample error Eout. There exists an optimal model complexity so that Eout is minimized.

� N : A large number of training samples always helps the generalization bound, as reflected by the fact
that ϵ(N,H, δ)→ 0 as N →∞.

� δ: The confidence level tells us how harsh we want the generalization to be. If we want a very high
confidence interval, e.g., 99.99%, then we need a very small δ = 0.0001. This will in turn affect the
number of training samples N required to achieve the confidence level and the desired error bound.

Figure 13: The VC generalization bound suggests a trade-off between model complexity and generalization.
If we use a more complex model, the in-sample error drops but the out-sample error increases. The optimal
model complexity is determined when the out-sample error is minimized.

© 2023 Stanley Chan. All Rights Reserved. 30

3.6.3 Generalization bound for testing (not training)

The VC analysis provides us a good guideline to train a model. However, the estimate provided by the VC
analysis is often too loose to provide any accurate prediction of Eout. In practice, no one really uses VC
analysis to inform a training process. What is more often used is a testing dataset. The testing dataset

Dtest = {x1, . . . ,xL}

contains L samples drawn from the distribution pX(x). No testing data xm can be in the training dataset
Dtraining.

Since in the testing phase the final hypothesis g is already determined, we will not run into the same
trouble in the training phase where we need to use the Union bound to account for the M candidate
hypotheses in H. As a result, the Hoeffding inequality simplifies to

P
{
|Ein(g)− Eout(g)| > ϵ

}
≤ 2e−2ϵ2L,

and the generalization bound becomes

Eout(g) ≤ Ein(g) +

√
1

2L
log

2

δ
.

Therefore, as the number of testing samples increases, we can certify the out-sample error by evaluating E∈
using the testing samples.

There are a few reminders about using the testing data:

� The common notion of testing accuracy is Ein(g), calculated based on the L testing samples. There-
fore, having Ein(g) does not imply that we will generalize well. If we change another testing dataset,
Ein(g) will change because it is a numerical value based on empirical sum. What is guaranteed by
the generalization bound is that as long as L is sufficiently large, Eout(g) will stay close to Ein(g) no
matter which particular testing dataset we use. There is a variance associated with Ein(g), and this

variance is reflected by
√

1
2L log 2

δ .

� The testing data has to be used after the hypothesis is determined. If we ever use the testing data as a
feedback to re-select the hypothesis, then it is cheating. For example, we cannot train a SVM, submit
to a competition website, and mark the misclassified samples to re-design the SVM.

� In principle the generalization bound is improved when we have more testing samples. However,
most practical datasets only have training data points and no testing data points. We can partition
the training set into training and validation. The proportion of training and validation needs to be
carefully chosen. If we allocate too many samples for validation purpose, then we will loose our ability
to training a good classifier.

© 2023 Stanley Chan. All Rights Reserved. 31

4 Bias and variance analysis

4.1 From VC analysis to bias-variance analysis

4.1.1 Rewriting the out-sample error

The bias-variance analysis is an alternative way of analyzing the out-sample error. In the VC analysis, the
out-sample error is defined as

Eout(g) = P[g(x) ̸= f(x)]. (29)

Basically, it is the probability that the final hypothesis g(x) is not the same as the target function f(x), i.e.,
the testing error. The random variable x is a testing sample drawn from a distribution p(x). By evaluating
the probability over x, we ask that with all the testing samples from the distribution p(x), what is the
probability of making a testing error.

The inequality “g(x) ̸= f(x)” implies that we are interested in the binary event. So if we let B =
{g(x) ̸= f(x)} be the event, then B ∈ {0, 1} is a binary variable. Then, the out-sample error becomes

Eout(g) = P[g(x) ̸= f(x)]

= P[B = 1]

= 1 · P[B = 1] + 0 · P[B = 0]

= E[B].

(30)

In other words, the out-sample error Eout(g) (which should be the probability) can be written as an expec-
tation

Eout(g) = Ex[1{g(x) ̸= f(x)}], (31)

where 1 is the indicator function. The expectation is taken over all x ∼ p(x).

4.1.2 0-1 loss and square loss

The difference between the VC analysis the bias-variance analysis is to recognize that in the VC analysis,
we have

Eout(g) = Ex

[
1{g(x) ̸= f(x)}

]
.

The expectation is the 0-1 loss. In bias-variance analysis, we replace the 0-1 loss by the square loss:

Eout(g) = Ex

[
(g(x)− f(x))2

]
.

Since the square loss is differentiable, we can potentially say something that VC analysis is not able to say.

4.1.3 Dependency on training set

One thing we need to clarify is the explicit dependency of the training set D in the bias-variance analysis. In
VC analysis, the training set is fixed and the final hypothesis is selected based on this particular training set.
However, since Hoeffding inequality is uniform across all training sets, the conclusion of the VC analysis
does not change regardless which D we use and which final hypothesis is picked. One way to think about
the Hoeffding inequality is that it provides the worst case bound. Since it is the worst case bound, it does
not matter which specific D and g we are using.

The bias-variance analysis is an average case analysis. Since the average case analysis requires taking
the expectation, the meaningful way of defining the out-sample error is to consider

Eout(g
(D)) = Ex

[
(g(D)(x)− f(x))2

]
. (32)

This means that if we use a different training set D, we will get a different Eout(g
(D)). This will give us

many Eout(g
(D)), depending on how the training sets D’s are generated. To account for all the possible D’s,

we can compute the expectation and define the expected out-sample error:

ED

[
Eout(g

(D))
]
= ED

[
Ex

[
(g(D)(x)− f(x))2

]]
. (33)

© 2023 Stanley Chan. All Rights Reserved. 32

Therefore, while the VC analysis is the worst case analysis, the bias-variance is the average case
analysis because we take average over all the possible training sets D.

What is the difference between VC analysis and bias-variance analysis?

� VC analysis: 0-1 loss. Bias-variance: square loss.

� VC analysis: D does not matter. Bias-variance: expectation over D.
� VC analysis: worst case. Bias-variance: average case.

4.2 Decomposition of the bias-variance

In this subsection we shall discuss how the bias-variance analysis is derived.

4.2.1 Decomposition

Let’s start by considering the out-sample error. If we use the square loss of the out-sample error, and if we
consider that the training set D is random, we can do the following calculation:

ED

[
Eout(g

(D))
]
= ED

[
Ex

[
(g(D)(x)− f(x))2

]]
= Ex

[
ED

[
(g(D)(x)− f(x))2

]]
= Ex

ED

[
g(D)(x)2

]
− 2ED[g

(D)(x)]︸ ︷︷ ︸
g(x)

f(x) + f(x)2

 .

Here, we define
g(x) = ED[g

(D)(x)].

We will discuss the meaning of g(x) later.
With additional calculations, we can show that

ED

[
Eout(g

(D))
]
= Ex

[
ED

[
g(D)(x)2

]
− g(x)2︸ ︷︷ ︸

ED[(g(D)(x)−g(x))2]

+ g(x)2 − 2ED[g
(D)(x)]f(x) + f(x)2︸ ︷︷ ︸

(g(x)−f(x))2

]
.

Based on this decomposition, we can define two terms:

bias(x)
def
= (g(x)− f(x))2,

var(x)
def
= ED[(g

(D)(x)− g(x))2].

The first term is called the bias, as it measures the deviation between the average function g(x) and the
target function f(x). Thus, regardless of how we pick the particular training set, there is an intrinsic gap
between the what we would expect (g(x)) and the ideal target f(x). The second term is called the variance.
It measures the variance of the random variable g(D)(x) with respect to its mean g(x). Using the bias and
variance decomposition, we can show that

ED

[
Eout(g

(D))
]
= Ex[bias(x) + var(x)]

= bias + var,

where

bias = Ex[bias(x)] (34)

is the average bias over the distribution p(x), and

var = Ex[var(x)] (35)

is the average variance over p(x).

© 2023 Stanley Chan. All Rights Reserved. 33

4.2.2 Analysis of the bias

Let’s take a closer look at the average hypothesis:

g(x) = ED[g
(D)(x)]. (36)

The average hypothesis can be considered as the asymptotic limit of the estimate

g(x) ≈ 1

K

K∑
k=1

gk(x), (37)

where each gk(x) denotes the final hypothesis picked by considering the training set Dk. For each Dk, we will
pick a different gk. As shown in Figure 14, this will give us a whole collection of final hypothesis functions
g1, . . . , gK . Therefore, for any fixed x, gk(x) is a random variable over the training set Dk.

-1 -0.5 0 0.5 1

-1

0

1

2

3

Figure 14: We run linear regression many times for different training datasets. Each one consists of different
random realizations of noise. The gray curves are the regression lines returned by each of the training
datasets. We then take the average of these gray curves to obtain the red curve, which is the average
predictor.

Remark: One should be careful that even if g1, . . . , gK are inside the hypothesis set, the mean g is not
necessarily inside too.

import numpy as np

import matplotlib.pyplot as plt

from scipy.special import eval_legendre

np.set_printoptions(precision=2, suppress=True)

N = 20

x = np.linspace(-1,1,N)

a = np.array([0.5, -2, -3, 4, 6])

yhat = np.zeros((50,100))

for i in range(100):

y = a[0] + a[1]*x + a[2]*x**2 + \

a[3]*x**3 + a[4]*x**4 + 0.5*np.random.randn(N)

X = np.column_stack((np.ones(N), x, x**2, x**3, x**4))

theta = np.linalg.lstsq(X, y, rcond=None)[0]

t = np.linspace(-1,1,50)

Xhat = np.column_stack((np.ones(50), t, t**2, t**3, t**4))

© 2023 Stanley Chan. All Rights Reserved. 34

yhat[:,i] = np.dot(Xhat, theta)

plt.plot(t, yhat[:,i], c=’gray’)

plt.plot(t, np.mean(yhat, axis=1), c=’r’, linewidth=4)

What is bias?

� Bias is defined as bias = Ex[(g(x)− f(x))2], where x is a testing sample.

� It is the deviation from the average predictor to the true predictor.

� Bias is not necessarily a bad thing. A good predictor can have some bias as long as it helps to
reduce the variance.

4.2.3 Analysis of variance

The other quantity in the game is the variance. Variance at a testing sample x is defined as

var(x)
def
= ED[(g

(D)(x)− g(x))2]. (38)

As the equation suggests, the variance measures the fluctuation between the predictor g(D) and the average
predictor g. Figure 15 illustrates the polynomial-fitting problem we discussed above. In this figure we
consider two levels of variance by varying the noise strength of en. The figure shows that as the observation
becomes noisier, the predictor g(D) will have a larger fluctuation for the average predictor.

-1 -0.5 0 0.5 1

-2

-1

0

1

2

-1 -0.5 0 0.5 1

-2

-1

0

1

2

(a) small variance (b) large variance

Figure 15: Variance measures the magnitude of fluctuation between the particular predictor g(D) and the
average predictor g.

What is variance?

� Variance is the deviation between the predictor g(D) and its average g.

� It can be reduced by using more training samples.

4.2.4 Interpreting the bias-variance decomposition

What can we say about the bias-variance decomposition when analyzing the model complexity? We can
consider two extreme cases. In the first case, we have a very simple model and so H is small. Since there are
not many choices of the hypothesis, the deviation between the target f and the average of these hypotheses
g is large. Thus, the bias is large. On the other hand, the variance is limited because we only have very few
hypotheses in H.

© 2023 Stanley Chan. All Rights Reserved. 35

The second case is when we have a complex model. By selecting different training sets D’s, we will
be able to select hypothesis functions g1, . . . , gK that agree with f . In this case, the deviation between the
target f and the average of these hypotheses g is very small. The bias is thus bias ≈ 0. The variance,
however, is large because there are many training sets under consideration.

Figure 16: [Left] Large bias but small variance. [Right] Small bias but large variance.

Figure 17 gives a pictorial representation of bias and variance. In this figure, we construct four scenarios
of bias and variance. Each cross represents the predictor g(D), with the true predictor f at the origin.
Figure 17(a) shows the case with a low bias and a low variance. All these predictors g(D) are very close to
the ground truth, and they have small fluctuations around their average. Figure 17(b) shows the case of a
high bias and a low variance. It has a high bias because the entire group of g(D) is shifted to the corner.
The bias, which is the distance from the truth to the average, is therefore large. The variance remains small
because the fluctuation around the average is small. Figure 17(c) shows the case of a low bias but high
variance. In this case, the fluctuation around the average is large. Figure 17 shows the case of high bias and
high variance. We want to avoid this case.

Bias low Bias high Bias low Bias high
Var low Var low Var high Var high

(a) (b) (c) (d)

Figure 17: Imagine that you are throwing a dart with a target at the center. The four subfigures show the
levels of bias and variance.

How to interpret the bias and variance?

� Bias = How close is the average function g to the target f .

� Variance = How much uncertainty you have around g.

4.3 Overfitting

The bias and variance analysis allows us to understand the phenomenon of overfitting. In this subsection,
our goal is to illustrate the concept through several examples.

4.3.1 Fitting a sinusoid

Consider a target function f(x) = sin(πx) and a dataset of size N = 2. We sample uniformly in the interval
[−1, 1] to generate a data set containing two data points (x1, y1) and (x2, y2). We want to use these two
data points to determine which of the following two models are better:

� M0 = Set of all lines of the form h(x) = b;

© 2023 Stanley Chan. All Rights Reserved. 36

� M1 = Set of all lines of the form h(x) = ax+ b.

Figure 18 illustrates an example of how the models would yield the lines. Given two data points,M0 seeks a
horizontal line h(x) = b that matches the two data points. This line must be the one that passes through the
mid-point of the two data points. The modelM1 is allowed to find an arbitrary straight line that matches
the two data points. Since there are only two data points, the best straight must be the one that passes
through both of them. More specifically, the line returned byM0 is

h(x) =
y1 + y2

2
,

and the line returned byM1 is

h(x) =

(
y2 − y1
x2 − x1

)
x+ (y1x2 − y2x1) .

As we change (x1, y1) and (x2, y2), we will obtain different straight lines.

Figure 18: [Left] Fitting two data points usingM0. [Right] Fitting two data points usingM1.

If we keep drawing two random samples from the sine function, we will eventually get a set of straight
lines for both cases. However, sinceM0 restricts ourselves to horizontal lines, the set of straight lines are all
horizontal. In contrast, the set of straight lines forM1 contains lines of different slopes and y-intercepts.

Figure 19: [Left] Possible lines generated byM0. [Right] Possible lines generated byM1.

As we increase the number of experiments, the set of straight lines will form a distribution of the model.
Since now we have a distribution, we can determine is mean, which is a function, as g. Similarly, we can
determine the variance of the function var(x). For example, in Figure 20 we draw the possible lines that are
within one standard deviation from the mean function, i.e., g ±

√
var(x).

So which model is better in terms of bias-variance? If we compute the bias and variance, we can show
that

biasM0
= 0.5, biasM1

= 0.21,
varM0

= 0.25, varM1
= 1.69.

Therefore, as far as generalization is concerned, a simple model using a horizontal line is actually more
preferred in the bias-variance sense!

© 2023 Stanley Chan. All Rights Reserved. 37

Figure 20: Average hypothesis function g(x) and the variance var(x).

This is counter-intuitive because how can a horizontal line with only one degree of freedom be better
than a line with two degrees of freedom when approximating the sine function? However, the objective here
is not to use a line to approximate a sine function because we are not supposed to observe the entire sine
function. Remember, we are only allowed to see two data points and our goal is to construct a line based
on these two data points.

The approximation error in the usual sense is captured by the bias, as g is the best possible line within
the class. The generalization, however, should also take into account of the variance. While M1 has a
lower bias, its variance is actually much larger than that of M0. The implication is that while on average
M1 performs well, chances are we pick a bad line inM1 that end up causing very undesirable out-sample
performance.

One thing to pay attention to is that the above analysis is based on N = 2 data points. If we increase
the number of data points, the variance ofM1 will drop. As N →∞, the variance of bothM0 andM1 will
eventually drop to zero and so only the bias term matters. Therefore, if we have infinitely many training
data, a complex model will of course provide a better generalization.

4.3.2 Fitting a polynomial

Suppose that we are given a target function f . We do not know what it is because it is a target function.
For visualization we draw the target funtion in red. We draw 5 noisy samples from this target function.

Figure 21: Target function: red. Hypothesis function: blue, which is a 4th order polynomial in this case.

Perfect fitting. Since we only have 5 data points but we use a 4th order polynomial, we can perfectly
fits the five data points. (The polynomial degree is high enough to fit every one of the 5 data points,
perfectly!) Therefore, we have Ein = 0 because the training error is zero. However, if we consider the
out-sample error Eout, we know that it will be terrible because it is overfitted to the 5 data points. In other
words, we are not able to generalize.

Is model complexity the reason? So, is model complexity the reason? Since we use a 4th order
polynomial, perhaps our model is too complex. But this cannot be true. Today’s neural networks are very
complex. However, the generalization error goes down and then goes up as we increase the number of training

© 2023 Stanley Chan. All Rights Reserved. 38

epochs. Our network capacity remains the same throughout the training, but how come the generalization
error goes up and down? Certainly, it is not just the model complexity.

Is noise the reason? Noise could be a reason. But what if we use a 50th order polynomial to fit a
clean dataset? Suppose we have a target function shown below and its corresponding data points. We fit
the data using a 50th order polynomial, and we also fit the data using using a 2nd order polynomial. Since
there is no noise, we do not need to worry about the corruption caused by noise.

But the result below shows something interesting. Even though there is no noise in the dataset, the
50th order polynomial still overfits (very significantly). We can evaluate the in-sample and out-sample error
for the model:

� (i) Use a 2nd order polynomial: Ein = 0.029, Eout = 0.120

� (ii) Use a 10-th order polynomial: Ein = 10−5, Eout = 7680

See, we overfit the clean data. So, noise is not the only reason for overfitting.

Is model mismatch the reason? Suppose the target function is a 10th order polynomial. What if
the fitted curve is also a 10th order polynomial. Since now the hypothesis model matches with the target
function, there should not be any overfitting. However, suppose we draw 5 data points from this 10th order
polynomial. We assume that the data points are clean.

As you can see in the figure below, with 5 data points, a 10th order polynomial still overfits. In contrast,
a 2nd order polynomial appears to fit very well to the data. So, the problem has to do with the number of
training samples relative to the model we choose.

What have we learned about overfitting from the above two examples?

� Better functional approximation ̸= better generalization. (Sinusoid example)

� Model complexity alone is not the cause of overfitting. (Think about neural network size does
not change during training.)

� Noise could be a reason, but it is not the only reason for overfitting. (We overfit even if the data
is clean)

� Model mismatch could be a reason, but not the only reason. (We can match the model to the

© 2023 Stanley Chan. All Rights Reserved. 39

target function, but we may still overfit.)

Therefore, overfitting, is the result of a mix of these issues, not one single factor alone.

4.4 Bias-variance analysis vs VC analysis

4.4.1 What does bias-variance tell us about overfitting?

So, how do we use the bias-variance analysis to understand the overfitting issue? We start by recalling our
derivation of the out-sample error:

Eout = ED

[
Eout(g

(D))
]

= Ex

[
ED

[
g(D)(x)2

]
− 2ED[g

(D)(x)]f(x) + f(x)2
]

= Ex

[
ED

[
g(D)(x)2

]
− g(x)2︸ ︷︷ ︸

ED[(g(D)(x)−g(x))2]

+ g(x)2 − 2ED[g
(D)(x)]f(x) + f(x)2︸ ︷︷ ︸

(g(x)−f(x))2

]
. (39)

In the presence of noise, what if we replace the target function f with the following noisy version?

f(x)←− f(x) + ϵ(x), (40)

where E[ϵ(x)] = 0 (meaning that the noise is zero-mean).
If we substitute this f into the above derivations, we can show that

ED,ϵ

[
(g(D)(x)− (f(x) + ϵ(x)))2

]
= ED,ϵ

[
(g(D)(x)−g(x) + g(x)−f(x)− ϵ(x))2

]
= ED,ϵ

[(
g(D)(x)− g(x)

)2
+ (g(x)− f(x))

2
+ (ϵ(x))

2

]
By assuming that the cross-terms involving E[ϵ(x)] are zero, we can show

Eout = Ex[everything on the right hand side of (39)]

= ED,x

[(
g(D)(x)− g(x)

)2]
+ Ex

[
(g(x)− f(x))

2
]
+ Ex,ϵ

[
ϵ(x)2

]
(41)

So, we observe that the out-sample error is affected, simultaneously, by three terms:

� Variance: ED,x

[(
g(D)(x)− g(x)

)2]
. Larger variance means that you have larger fluctuation between

the mean and the target. So even if the mean is close to the target, the huge variance will make
the generalization worse. To reduce the variance, the only way is to increase the number of training
samples. Once we have enough training samples, it matter less which particular training set we choose
because all the training sets would have enough variety of data.

© 2023 Stanley Chan. All Rights Reserved. 40

� Bias: Ex

[
(g(x)− f(x))

2
]
. The bias cannot be reduced unless we use a more sophisticated model (so

that the model capacity increases. But if the model capacity increases, you will suffer from a high
variance. So, ultimately, we go back to the equation of asking for more training data.

� Noise: Ex,ϵ

[
ϵ(x)2

]
. The amount of noise will be reduced if we have enough training samples. Since we

assume that the noise is independent, the more samples we see, the weaker the contribution from the
noise will be.

Therefore, to summarize

How to improve overfitting?

� Overfitting ↓ if number of data points ↑
� Overfitting ↑ if noise ↑
� Overfitting ↑ if target complexity ↑

4.4.2 Decomposing the learning curve

Both bias-variance and VC analysis provide a trade-off between model complexity and sample complexity.
Figure 22 shows a typical scenario. Suppose that we have learned an final hypothesis g(D) using dataset D
of size N . This final hypothesis will give us an in-sample error Ein(g

(D)) and out-sample error Eout(g
(D)).

These two errors are functions of the dataset D. If we take the expectation over D, we will obtain the
expected error ED

[
Ein(g

(D))
]
and ED

[
Eout(g

(D))
]
. These expected error will give us two curves, as shown

in Figure 22.
If we have a simple model, the in-sample error ED

[
Ein(g

(D))
]
is a good approximate of the out-sample

error ED
[
Eout(g

(D))
]
. This implies a small gap between the two. However, the overall expected error could

still be large because our model is simple. This is reflected in the high off-set in the learning curve.
If we have a complex model. the in-sample error ED

[
Ein(g

(D))
]
would be small because we are able

to fit the training data. However, the out-sample error is large ED
[
Eout(g

(D))
]
because the generalization

using a complex model is difficult. The two curves will eventually meet as N grows, since the variance of
the out-sample will drop. The convergence rate is slower than a simple model, because it take many more
samples for a complex model to generalize well.

Figure 22: Learning curves of a simple and a complex model.

The VC analysis and the bias-variance analysis provide two different view of decomposing the error.
VC analysis decompose Eout as the in-sample error Ein(g) and the generalization error ϵ. This ϵ is the gap
between Ein and Eout. The bias-variance analysis decompose Eout as bias and variance. The bias is the
residue caused by the average hypothesis g. The bias is a fixed quantity and does not change over N . The
gap between Eout and the bias is the variance. The variance drops as N increases.

© 2023 Stanley Chan. All Rights Reserved. 41

How do we compare the decomposition of the learning curve using the bias-variance analysis and the
VC analysis? As shown in Figure 23, the VC analysis gives us a decomposition based on the in-sample
error and the generalization error, where the sum becomes the testing error. For bias-variance analysis, the
decomposition is based on the mean hypothesis. Asymptotically, the in-sample error and the out-sample
error will both converge to the error produced by the mean hypothesis. But at any instant, the testing error
is decomposed into the deviation from mean to the truth, and then from the testing error to the mean.

Figure 23: [Left] VC analysis. [Right] Bias-variance analysis

How does VC and bias-variance decompose the learning curve?

� VC decomposes the learning curve as out-sample error = in-sample error + generalization error.

� Bias-variance decomposes the learning curve as out-sample error = bias + variance.

There is a subtle but important difference between the bias-variance analysis and the VC analysis.
Bias-variance depends on the learning algorithm A whereas the VC analysis is independent of A. With the
same hypothesis set H, VC will always return the same generalization bound. This is a uniform performance
guarantee over all possible choices of dataset D. For bias-variance, the same H can lead to different g(D),
depending of which D is being used. This is reflected in the bias and variance term Eout(g

(D)). Of course,
the overall bias-variance is independent of D because we take expectation ED

[
Eout(g

(D))
]
. VC analysis does

not have this issue.
In practice, bias and variance cannot be computed because we never have the target function. (If

we know the target function there is nothing to learn!) Therefore, bias-variance can only be served as a
conceptual tool to guide the design of a learning algorithm. For example, one can try to reduce the bias
but maintaining the variance (e.g., via regularization and prior), or reduce the variance but maintaining the
bias.

© 2023 Stanley Chan. All Rights Reserved. 42

