1+2P— D(K -1

Conv Shape:o = +1, Receptive field: R, = Ry_; + Diay (K, — 1) x IIXS!S;, Logistic: hg(x) =

1+e*ﬂ%
Image Segmentation N0|se ( B75 ) Partial Volume Effects ( #% &3 ) Intensity Inhomogeneities

( BEETH4 ) Anisotropic Resolution ( FES 45 E ) FEH spatial resolution differs Imaging
Artifacts ( F{#&{5% ) Non-physiological elements or distortions in an image eg motion artifacts or metal
artifacts, by equipment or movement. Limited Contrast ( S tbE2R ) TRALLEMYEBISME | 24 intensity
Morphological Variability ( XA %R ) BAER

Segmentation Eval Ground Truth: Reference or standard against method can be compared,e.g. the optimal
transformation,or true segmentation boundary. usually only available for: Synthetic or simulated phantoms(#
/41 %4K),Physical phantom (MRS | (FiEiNERE 419)

Gold Standard Expert: AKMEE F LH7E - Disadvantage: & Zi)|%k&tedious & time-consuming
Intra-observer Variability: ¥l & R R4 R, Inter-observer Variability: 7~ EM & T[4 R ( Disagree )

= Remedy: Z X% & , 2NERSE , Quantify (dis)agree

Assess performance: Precision/Positive Predictive Value: PPV
the repeatability, or reproducibility of the measurement .
Accuracy(ACC = 20X, p = TP + FN,N = TN + FP): o |

= E—FE Acc = %éﬁlﬁ%ﬁ@?{d\(&as, trueness)

random errors, statistical variability,

Accuracy

= =i Acc = random+systematic -> high precision and high trueness. /
.y = b= (“'BZ)PR A+gHTP precision
AR BERE = RED + IR, F PR = GrRTP RPN P

Robustness: = degradation in performance with respect to varying noise levels or other imaging artefacts
Confusion matrix Conditional Positive/Neg P/N: the number of real pos/neg cases in the data
=TP/Hit ; TN/Correct Rejection ; FP/False AIarm/Type | E | FN/Miss/Type Il E
*Recall/Sensitivity/Hit Rate/TP Rate: TPR = =Specificity/TN Rate: TNR =

_Tre_ Effect of structure shape
TP+FP

m__TP IN__TN
P T TPYEN N TN+FP

*Precision/Pos Pred Val: PPV =

Overlap Measures: Jaccard Index (loU): JI = Eﬂg: 3 3 3 3
' h B S B
Dice’s Coefficient: DSC = 2408l _ __21P__ _ Ol % H H] ]
|Al+|B| 2TP+FP+FN - e - - -
Other measures & Surface Dist. Measure H ] H H H H
H g k] £ g g
= Volume similarity: VS =1— 12T Vi T B @ i D H D i D §‘ = i
" |Al+|B| 2TP+FP+FN & * & & &

= Hausdorff distance: HD = max(h(4, B), h(B,A)),h(A,B) = max rgneigna —bl|
d(AB)+d(B,A 1 .
LADHED 4(4,B) = % Taeamninlla = bl

Reference

Q i 5

= (Symmetric) Average surface distance:ASD =

Prediction |

Pitfalls in Seg Eval Effect of structure size

O Reference outine B Prediction

Lrge srcures S srcure
el - ‘
Dosc,=0m  Effect of annotation noise B
G osc. =055 eacn ETTECE OF resolution
- Dosc_-ow
o -
Effect of “empty” labelmaps H ] 2
Segmentation Methods
L ity-based (e.g., thr Iding 7): 4% (UL: a lower and upper) 7. [VE simple, fast, x:regions must be

homogeneous & distinct -difficulty in finding consistent thresholds across images.-leakage, isolated pixels &
‘rough’ boundaries

= Region-based (e.g., region growing): M\l FFi£#2#) seed ptr £k X1 M relatively fast, yields connected
region (from a seed point) X: « regions must be homogeneous, leakages and ‘rough’ boundaries likely,
requires (user) input for seed points.

= Atlas-based: majority voting. Seg X F N MREHH atlas , register BIF B 5. #AJF Fusion, ™ robust and
accurate (like ensembles), yields plausible segmentations, fully automatic X : computationally expensive,
cannot deal well with abnormalities, not suitable for tumour segmentation.

E: [T TET] - unpooiing witn spatalinformaton
anan pOnn
gD aan
<+ ] oo [o]7]
JR— ——

Multi-scale Process: Jf il Pathway 20 B N REME H .

Convolutional Layers

Dilated
convolutions

Up-sample the low-res features back to -
P ‘normal resolution. Concatenate FMs.

from two pathways.

SELF-SUPERVISED LEARNING (SSL) & CONTRASTIVE LEARNING

X 1o dxx dyx 0 “x X\ - Traditional interpolation-based upsampling (NN, bilinear) can be
Itow: (Y |=10 1 dxy dyy 0 ay 0 implemented as a convolutional layer with fixed weights:
1 0 0 1 nnan
poennnn
A panon
paon

Maximize agreement
2 WO L

o] 1o)

hi ¢ Represenuation—  h;

Augmentation pipeline

= Needs to reflect what
I information the model
should disregard and

Froe-Fom Defomatons

et

) () what it should focus on
(&), AF)
I 7 * Needs to be hard
Ml enough, otherwise trivial iaV%
&) information is learned e

. ) exp (sim(z;,2))/7) . o
SimCLR (Req Large B): ¢;; = logzik N keijexp (sim (i) NT-Xent: sim(u,v) =

negatives more (negative pairs wrongly mapped closed to each other).

Triplet loss: #(x,x,,x_) = Syeymax (0, [|f () — f(x I3 = IIf (¥) — Fx )3 + €), & margin param between
x4, x_. Linear Probing: Froze Model, Train Head. FT: Train Model+Head.

BYOL (88 neg %f , BE B): R4 IEXS emb & sim— BEEEA B , & robust to smaller B than SimCLR,

Low t penalise hard
HuHIIVH

view representation

. “Student necwork” weights
learned by gradient descent.

“Teacher nework” weights are ()
2 moving average of the welghts
of the student necwork.

DINO: {3 softmax+CE &1t cos sim. Centering &g,

B2 local view (small crops) & 2 global view (big crops). All L & G crops &3 student , Z/FR &R G
GENERATIVE APPROACHES TO SELF-SUPERVISED LEARNING; MAE: Loss: MSE = Z(f’ = xi)z

CL has some drawbacks: large B sizes, design of the augmentation pipeline etc.

Evaluation of image registration

* Two types of evaluation: Qualitative and Quantitative evaluation.
Qualitative

Quantitative

What s a correct registration?

How to define a ground truth?

c
5 ” % -
JOINT EMBEDDING PREDICTION (I-JEPA): 452 % Rec R #%.
Loss: pred patch-level representation 3, (i), tgt ptch-Ivl rep s, (i). Loss=L,(3, s)

2
1 P P 1 a

Loss = L5, 15 (8,0,5,0) = S5 Sien |5, 5y

Image Registration

Images: - f: R#W.C - R1. Meta Info: Scale: element spacing (e.g. in mm), Orientation:main axes’s dir, Position:

image origin.
Deformations: LowDim Deform Model. Control Point. Finite Element. Dense Displacements field.
Applicati in medical il Multi-modal image fusion, Detection of change, Correction of motion,
Motion estimation, Segmentation using Registration
Intensity-based Registration
Objective/Cost/Energy fx: C(T) = D(I » T,]), I o T moving image, J:fixed img, Optimisation: T = arg mTin c(T)
M dal vs Multi-modal: Mono-modal(intensities are related &8 &%), Multi: (S xR R RLEITXR)
(Dis)similarity Measures: Intensity differences:

2
Sum of Squared Differences (SSD):Dssp(I o T,J) =~ = SV (I(T(xi)) - ](xi))
Sum of Absolute Differences (SAD):Ds (I o T,]) = —Z L (T (x) — J (x| Assume: iid
Correlation Coefficient: Do(I°T,]) = ——Z 1(l(T(xL)) w)(J ) -

2
w) (B0 ) [FEniee) -y)
Assumption: linear relationship between intensity distributions
Intensity distributions: p(i,j) = % N is number of pixels in one image. p(i) = X; p(i,j)
Shannon Entropy: H(I) = — X;p()log (p;) Jointentropy: H(I,)) = —X,;X;p(i,j) logp(i,j)
Mutual information: MI(1,]) = H(I) + H(J) — H(l,]),describes how well one image can be gxplained by

another image, can be rewritten in terms of marginal & joint prob M(1,]) = ¥; X p(i, j) log pi’f)‘)’)’&)

Dy (IoT,]) =—=MI(I~T,]), Normalised MI: NMI(1,]) = H(');'H)U) is independent of the amount of overlap

between images. Dissimilarity measure Dy, (I o T,J) = —NMI(I » T,]), Assumption: statistical relationship
between intensity distributions.

Image Overlap (Dis)similarity measures are evaluated in the overlapping region of the two images. (easily
have Local Optima). Solve: Successively increase degrees of freedom, Gaussian image pyramids
Optimisation Strategies: GD,SGD, Downhill-simplex, Bayesian/Discrete/Convex optmz

Qualitative Eval: Visual assessment

Quantitative Eval: req GT / surrogate measures

Evaluation needs to be independent of registration features or cost function!
End-to-End Unsupe

Spatial Transformer Networks Image with CNNs

G genersor

—

Ending

cee 9

Causality

Would my grades have been better had | more?, How effective is a in preventing a disease?
Causality is the relationship between and effect. Simpson’s Paradox: Correlations may reverse
depending on how we aggregate data and its subpopulations

Predictive Modelling Given an image , train a model to predict some label Y, P(Y| ")

Ladder of Causation Activity Questions

1. Association Seeing, “What if | see ...? How are the
How would seeing X change my belief in Y? Observing variables related? How would
Modeling correlations P(Y|X) seeing X change my belief in Y?"
2.Intervention Doing, What if | do ...? How? (What would
What will Y be if | do X? Intervening Y be if | do X? How can | make Y
-Use experiments to identify causal effects happen?)

-Crucial for planning and policy making

3.Counterfactual Imagining, What if X had done ...? Why?
What if X had not occurred? Retrospectio Was it X that caused Y? What if X
- Counterfactual reasoning n, had not occurred? What if | had

- Deduce causes for observed events rL:gnderstandi acted differently?

Structural Causal Models (SCM) is a triple: M = (X, U, F), observed X = {xy, ..., xy} and unobserved, U =
{uy, ..., uy}, = causal mechanisms: F = {fj, ..., fy}, = The value of each variable is a function of its parents (direct

causes): x = fy(pay, u),l =1, ...,
&', Ty are endogenous whereas 141, llz are exogenous

Algorithm 1 FederatedAveraging. The K clients are
indexed by k: B is the local minibatch size, E is the number
of local epochs, and 7 is the learning rate.
Server executes:
initialize wo
for eachround t = 1,2,... do
m <« max(C - K, 1)
St + (random set of m clients)

for each client k& € S, in parallel do
k

uy ~ N(0,1) Wity (lil‘f‘:}UPgﬂ|e(k- w)
Wepy 4 Xy TEWE

@y = fi(w),

w9 = fo(@y, uz), uz ~N(0,1)

ClientUpdate(k, w): // Run on client k
B « (split Py, into batches of size B)
for cach local epoch i from 1 to E do

° for batch b € B do

®

@ @ o 6 T
S o & |do
© 6 & oo
(8) Confounder (o) Collider

Observational Distribution:

- SCMs with jointly independent exogenous noises are Markovian, 31—/ SCM # i & SMER A Ed

Y, BBAFRZ SCM £ Markovian, tit2i% , TUIBHNEEZBWBKE D HERE B RHRR: P(y;, ...

= P ()

-> Markovian SCM induce unique joint observational distribution over the endogenous variables, #EiX f#&
, BIAAEEBRRIAGRECHEERITR , IABEANAN S FIUASEREAETERT ATHRES

'ﬁ"ﬂ@iﬁﬂi/‘r\: Pay(xyy e, xy) = T2 Py Ciilpay), RPN EERXT S ( MEEMNEA ) - Each variable is

independent of its non-descendants given its direct causes (causal Markov condition), “%6 F # direct causes ,

BN EBBESHEFRERIXR,

Interventional Distribution:

- SCMs predict the causal effects of actions via interventions, = Interventions answer causal questions like:
E.g. what would be if we set x; := ¢? =>Interventions replace one or more of the structural assignments and are
denoted with the do operator: do(x; = ¢),

= This induces a submodel M, and its entailed distribution 1Ay the interventional distribution: Py, (X|do(c))
> XHHSBRIBRENEDERE LRGN FREM; RNMETETRENHRES F:

Py, (X |d0 (c))

Counterfactuals:

- SCMs can consider hypothetical scenarios: Given that we observed (xy, x;), what would x,have been had
x;been c? All else being equal, would | have been late had | not

= Counterfactual inference involves three steps: 1. Abduction: Update P(U) given observed evidence, i.e.
infer P(U|X)

2. Action: Intervene by e.g. do (X} = c¢) and obtain the submodel M, 3. Prediction: Use (M, P(U|X)) to
compute counterfactuals.

Example: Computing Counterfactuals xq = f1(uy) = 1+ uy, x5 = fo(x1,u3) = 3x1 + u,

: Given we observed , what would have been had been 5?
1. Abduction: x; =2 =14+uy sy =1x=4=3-2+u, =
2. Action: 1, := 5, 3.Prediction: X, =37+ 1, =3-5-2=13
Deep Structural Causal Models
- Leverage deep generative models to learn SCM mechanisms: x;, := fi (pay, uy)

- Tractably estimate causal effects of interventions and perform counterfactual inference, i.e. answer “what
if...?" type questions

= Abduction is challenging in complex problems, e.g. medical imaging.

Morpho-MNIST, Brain | Chest X-ray |

Evaluating Counterfactuals:

- Soundness Theorem fi E £4#£ 8 f composition,effectiveness,reversibility iX 3 f¥R 2 4 HEMN

-> Completeness Theorem X =R LR % 2K,
= We can measure Counterfactual Soundness using these axiomatic properties

(c) Mediator

Juy) =

=2

1+2P=D(K-1)-1
s

Conv Shape:o = +1, Receptive field: Ry, = Ry_; + Diay. (K, — 1) x IKI1s;,



Composition

I High composition (de-biased model)
>
2
°

Effectiveness

Or using learnable welghts as transpose convolution:

Low composition (biased model) -> identity is lost

0

o
o
o

do_two: —
do_colour = original_colour
do_digit = "two”

do_six:
do_colour = original_colour

High reversibility (de-biased model) do_digi

tervention:
do_zero:

do_colour = original_colou
do_digit = “zero”

'

Reversibility

High effectiveness (de-biased model)

Low effectiveness (biased model) -> colour not preserved

Py Py Py

Low reversibility (biased model) -> identity and colour are lost
= . sy '}

Conclusion & Outlook

= It is crucial to account for the data-generating process and causality in our modelling to avoid biased
predictions

-> Deep SCMs can generate plausible high-fidelity image counterfactuals

- Latent mediator models enable estimation of direct, indirect and total causal effects for high-dimensional
variables Limitations: - Only consider Markovian SCMs; although Markovianity is a common assumption in
causality literature, it is strong in most cases - Measuring counterfactual effectiveness relies on separately
trained classifiers

Inverse Problem : y = Ax + n, Goal: Recover x from y. Inpainting *+ Deblurring « Denoising * Super-resolution
« Image Reconstruction (Medical imaging). X:iRE, Y : MU & E &
Example deblurring: Least Squares: argmin D(Ax, y), D(4x,y) = % [l1Ax — yl3

x

Least Squares Sol: £ = (A"4)~14"y, Regularisation: arg n'gcin D(Ax,y) + AR(x),R(x) = % [lx113
Wth Tikhonov regularisation: = (4”4 + A1) ~'A"y, Better conditioned (and noise suppression)
Data Consistency term: D(Ax,y), Regularisation term (encoding prior knowledge on x): R(x), Pram 14

Common Regularisers: R(x), Tikhonov: ||Vx||3, Total variation:[|Vx||,; = (Zd(|\7x|;1)2) , Wavelet || Wx||

Regularisation in inverse problems: y — arg n';in D(Ax,y) + AR(x) — %, Instead of choosing R a-priori based
on asimple (geometric or other) model of image, learn R from training data.

Solving Inverse Problems with Deep Learning

Model agnostic (ignores forward model): x - [Blurring] -
(partly) model agnostic: x = [Blurring] - [Downsamplmg] -y - F'> NN(J) - x, F!: Up-sample using
(linear, cubic) interpolation Proximal GD zK = % + nA™ (y — Ax(X).
Deep proximal gradient Decoupled (First learn, then reconstruct) ->

[Downsampling] - y - NN(}’) -Xx

-> Perceptual loss

Unrolled + —e{ g, D)+ 230) e ¢ =1 3 690 -60® )
Optimisation-> i, T — (@' 0-e®)
Problem fork /
Formulation: HH' I kj N‘l

Sround truth Estmaton ____

Pre-trained network (¢ 9. VGG)

- Upsample (LR) image to high-resolution (HR/SR) image, -Forward model (going from high- to low-resolution)
is straightforward and involves some image degradation followed by downsampling. -Inverse model: e.g.
interpolation-based models

Super-Resolution framework: Post-upsampling SR + Directly upsamples LR image into SR+ Requires
learnable upsampling layerss Advantages: — Fast and low memory requirements+ Disadvantages: — Network
has to learn entire upsampling pipeline — Network typically limited to a specific up-sampling factor y — n *
conv - upsample - %

Pre-upsampling SR: Two stage process: 1 5% £ X## (e.g. linear interpolation) 2. refining upsampled fi DNN
(usually a CNN). « ADV:— Upsampling operation is performed using interpolation, then correct smaller details—
Can be applied to a range of upscaling factors and image sizes

+ DISADV: — Operates on SR image, thus requires EZ 1t HHMMAFy - upsample - y,, > n * conv > &
Progressive upsampling SR: Multi-stage process: Use a cascade of CNNs to progressively reconstruct
higher-resolution images.— At each stage, the images are upsampled to higher resolution and refined by
CNNs+ ADV:— Decomposes complex task into simple tasks — Reasonable efficiency DISADV: difficult to train
very deep models y —» m  [n * conv - upsample] - %

Iterative up-and-down sampling SR: « Approach:— Alternate between upsampling and downsampling (back-
projection) operations — Mutually connected up- and down-sampling stages. « ADV:— Has shown superior
performance as it allows error feedback— Easier training of deep networks. y — conv - n *

(upsample + downsample + residual) - upsample — %

How to implement upsampling?

bilinear:a = 275 B =224 f(x,y) = (1= ) (1 = B, 1) + a(l= B)I G 31) + (1 = )Pl (a1, ¥5) + aBl (2, 32)

X Yo
Loss functions for SR: Pixel-wise loss function (either L1 or L2): L, = —Zizllxi —-%lP

N
= ﬁz{vzld(xi —%),d(a) = 0.5a? if |a| <1 otherwise |a| —

Perceptual loss: Computes loss on the output 8 of an intermediate layer | of a pre-trained network

Total variation: L = iz’i":l 2,1(|Vx|;‘)2, Assumption: Absolute value of gradient of the image is low, e.g.
image is piecewise constant. GAN LOSS: min max Ey_p,,,,x) 109D ()] + E;~p, () [log (1 = p(6@))]

Aim: To detect: — Which images are (real) high-resolution? R(x)=0 if x on image manifold, otherwise infty
« Use discriminator output as loss function: L = —logD(G(I z)). R(x)=0 if x in range(G) otherwise infty

Parameterizing images via generative networks
« Consider a generator network ¥ with a fixed input z;)

Alternative: Huber loss function: L,

« The network parameters w can # 1A a parameterization of Images w - x = ¥(zp; w), zy — VAE\y,w,,..wn =
x, optimization problem: min||x — ¥(zg; w) [I>
w

Deep Image Prior: X F X % # 4 B M 4 fitting naturally looking images is easier/faster than fitting others

DIP: Application to inpainting: For inpainting we only reconstruct the visible pixels, implicitly inferring the
pixels that are masked out by mask m: min,, |[m@(x — ¥(ze; w))||*

X-ray computed tomography (CT): H contrast — H spatial resolution — fast acquisition — but ionising radiation
Magnetic Resonance (MR):H contrast —H spatial res —no ionising radiation —but slow acquisition process
Cost Function Synonym: Loss function, error function, similarity measure + Quantifies how well the model
prediction matches targets « Needs to be selected according to the underlying task ¢ Is optimized during
training — needs to be differentiable! Eg: MSE

Training Phase Learning model: ¥ = fq(x,,) , * The parameters 6 of the mapping function f; are optimized
under a cost function

« The cost function quantifies how well : J = f4(x,,) is predicted given x,,, The parameters 6 by minimizing the
cost function £ with learning rate 7: 9%*! = gk — T%lg:sk Testing Phase (Inference): « Apply fyusing the
optimized 6 to the test set. Generalization: Ability to correctly predict unseen examples

Trustworthy Al/ML Al/ML: The need for data

« The power and effectiveness of Al/ML is critically dependent on the data that is used to train our Al/ML
models. — Quality of the data is one of the important aspects that determines the effectiveness of AI/ML
models: * Curation of the data (and the associated annotations) « Representativeness of the data (avoiding
bias) — Quantity of data « In general, the more data is available for training, the more accurate and robust the
resulting Al/ML models become. — Data sharing is more important, not only for training Al/ML models but also
for evaluating solutions in multi-institutional/multi-national trials

What are the hurdles BE® to getting more data? Human and societal challenges:Cost and effort for
collecting and annotating data — Incentives for data sharing (money, fame, other benefits) Technical
challenges— Data quality— Data annotation— Data exchange formats Legal challenges: What is allowed?
What consent is required? Regulation (e.g. GDPR) Privacy challenges —Ethical —Trust (risks such as privacy
breaches, data leaks and re-identification)

Secure and privacy-preserving ML: « Optimal privacy preservation requires implementations that are secure
by default so-called privacy by design « Requirements: — Minimal or no data transfer Federated learning:
train a ML model across decentralized clients with local data, without exchanging them — Provision of
theoretical and/or technical guarantees of privacy Differential privacy: perturb the data so that information
about the single individual is reduced while retaining the capability of learning

Federated Learning 1. Model sent to each client for training on local data 2. Local model updates encrypted
and sent back to server for aggregation 3. Aggregated model sent back to local client and model owner
(server) 4. Back to 1

In federated learning: » Supp N training are distributed to K clients, P, is the set of indices
of samples at client k, and n;, = |P;|: L(0) = Zle%LK(B),LK(B) = Z,EpkL(xl,yl, 0),Ep, [Lg]l =

L (iid),, Ep, [Lg] # L (non — iid),

« Suppose a C fraction of clients are selected at each round: C = 1: full-batch (non-stochastic) gradient descent
C < 1: stochastic gradient descent (SGD)

Federated SGD: Loop Client: VL, (0) - Server: 0" = 0}, + nzle%VLk(s)

Federated Averaging: * First, model is randomly initialized on the central server

« For each round t: — A random set of clients are chosen; — Each client performs local GD steps — The server
aggregates model parameters submitted by the clients 6/ = ¥, % 9’“

Challenges for federated learning

« Non-lID data — Training data for a given client is typically site specific, hence the site’s local dataset will not
be representative of the distribution of training samples.

« Unbalanced data — Sites may have a lot or little training data, leading to varying amount of local training
data across different sites.

« Massively distributed data — There may be extreme scenarios where each site only has very training
samples (in the limiting case one example)

« Communication costs—Communication between clients and servers occurs communication overheads. The
amount of overhead will depend on the number of clients and the frequency of updates from/to server.

« Privacy protection — No formal security/privacy provided — Prone to adversarial influence (server or client)

« Federated learning addresses the data sharing problems from the position of data governance; it allow the
data owner to choose who is the direct consumer of their data

A privacy-preserving 753&

k-anonymity « Idea: 715 ID 3t , FRZEERED individuals Example: [id,John,Male,1956,+ve] -> [id,Male, 1950-1960, +ve]
Adversarial priors: assume the attacker has no other information about the targets, not real

Homomorphic Encryption: Example Alice encrypts two values x and y and sends them to Bob, who adds
the encrypted values (via “homomorphic addition”) to produce an encrypted sum. When Alice receives it back,
she decrypts to get x+y. Bob never sees the plaintext x or y. This way, data remains private throughout the
entire computation.

Secure multi-party computation: « The individual contributions are ‘sharded’ and only the individual shards
are shared with the participants « If and only if they are all combined together, the final result is revealed « But
not the individual parts

« Confidentiality: neither knows the real value+ Shared Governance: The value can only be disclosed if
everyone agrees

Example Compute average score of exam

Differential Privacy Randomized responses « Enables draw statistical conclusion from datasets without
revealing information about individual data points. « Realised by adding a controlled amount of noise «
Differential privacy formalizes how we define, measure and track the privacy protection afforded to individual
as functions of factors like randomization probabilities and number of times surveyed.

P[A(D)) = 0] < e“P[A(D;) = O] , DipZE—MNMERI DB, ABE, O Rt cRAMESH

Concrete attack example: Gradient-based model inversion1. The adversary randomly generates an image-
gradient pair 2. The adversary captures the gradient update submitted by the victim 3. Using a suitable cost
function (often cosine similarity), the adversary minimises the difference between the captured and the
generated updates by perturbing the image they control 4. The algorithm is repeated until the final iteration is
reached.

DP-SGD:(1). Compute gradients for each individual sample (they represent independent clients) (2). Clip the
calculated gradients to obtain a known sensitivity (3). Add the noise scaled by the sensitivity from step 2 (4).
Perform the gradient descent step

Interpretability and Explainability Why Important: — Complexity and prevalence! — Safety and robustness is
critical — Generating knowledge + Debugging machine learning models: Data during deployment has noise

« To use machine learning responsibly we need to ensure that — Our values are aligned — Our knowledge is
reflected

Interpretability: Common Misunderstandings

«Simple ML models (e.g. linear models or decision trees are interpretable)

« Trust, fairness and interpretability are all the same thing — Interpretability can help to formalize concepts such
as fairness or trust— Once formalized it may not be need anymore

How can we interpret an existing ML model? « Ablation test: How important is a data point or feature? — Train
without certain data or features and observe/study the impact — Difficult and expensive  Fit functions (use first
derivatives) — Sensitivity analysis — Saliency maps- Visualization and attribution: — Identify input features
responsible for model decision ¢ Direct visualization of filters - Easy to implement - Limited practical value —
First layers are easy to interpret (mostly low-level features) — Higher layers are more difficult to interpret (non-
interpretable features)

« Problem: Visualization of filters has limited value « Solution: Instead visualize activations generated by
kernels — Strong response: Feature is present — Weak response: Feature is not present — Easy to implement —
Easy to interpret for early layers — Higher layers are more sparse — Channels may correspond to specific
features

How can we interpret an existing ML model? Occlusions « |dea: Mask out region in the input image and
observe network output « If masked out region causes a significant drop in confidence, the masked-out region
is important

Saliency maps DeconvNet  — A/ #l{k CNN AESRHENEAR , AREEERREZE 744", BEMHE
B RENEE-RNHE (FINARE —MNEENRE  ABEET ), 2 REMSE : FEE XL
5& | Eid*unpooling’ ERR LM TR LN , BEHRIE LA ERAFXMLE ( max locations ), BHFERZELS
EREMAZE, IHLTHFERNEME , ABE- NI FESEBROEERRNEE (2% ReLULE L
WRER ), PUEREREZBERE THNNAARGEN, ALRNESE - MTALN DER"

( saliency map ), #BYEAE CNN BRLERERIAR THEMRE.

* Question:— Which pixels are most significant to a neuron?— How would they need to change to most affect
the activation of the neuron?+ Solution:— Use back propagation but differentiate activation with respect to
input pixels, not weights
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! Socapasaion [elo]5]
DeepDream / Inceptionism: « Attempt to understand the inner workings of the network « Optimize with
respect to image * Idea — Arbitrary image or noise as input — Instead of adjusting network parameters, tweak
image towards high “X” where “X” can be + Neuron/Activation map/Layer « Logits/Class probability — Search for
images that are “interesting” — Different layers enhance different features+ Algorithm — Forward propagate to
layer n — No minimization of loss. Instead maximize L2 norm of activations of a particular NN layer —
Backpropagate to input layer « Resulting image will show learned features

Robustness: Adversarial Methods Example 57% cofidence + 0.007 noise = “gibbon”(99% confidence)
Adversarial attacks — Perturbation: Assume a linear classifier: §7x+ We can think of an adversarial example
that contains a small, nonperceivable perturbation to the input. Let's denote the perturbationas n: ¥ = x+1n *
Then, the logits of the classifier would be 87 = 67 (x + ) = 87x + 67y * Given a small perturbation 7, the
effect of the perturbation on the logits of the classifier is given by 877.

« Idea: — Find a ) that causes a change that is non-perceivable and ostensibly innocuous to the human eye,
yet destructive and adverse enough for the classifier to the extent that its predictions are no longer accurate. —
An adversarial example is one that which maximizes the value of 877 to sway the model into making a wrong
prediction

« Problem: — Need a constraint on 7; otherwise, one could just apply a large perturbation to the input «
Solution: — Apply a constraint such that [|5]l, < €, * Assume a perturbation: = € - sign(6) + What are the
bounds of this perturbation? n = € - sign(8) = 87y = € - 8Tsign(8) = €||6|l, = emn, m: avg magnitude of an
element of 6 « This means that the change in activation given by the perturbation increases linearly with
respect to n (or the dimensionality). « If n is large, one can expect even a small perturbation capped at € to
produce a perturbation big enough to render the model susceptible to an adversarial attack. « Remember that
for images n = no. of pixels » Such perturbed examples as referred to as adversarial examples

Adversarial attacks - Fast Gradient Sign Method

Key idea: « Perform GD in order to max the loss (the goal of adversarial attack). « Consider the input image x
to be a trainable parameter and compute the gradient with respect to the input image to create a perturbation.
n=€-sign(V,L(0,x,y))

« An adversarial example can be created as: ¥ = x + € - sign(V,L(6,x,y))

How can you use adversarial attacks? 1. Generate adversarial examples 2. Add the generated adversarial
examples to the training set

3. Retrain model using training set. Adversarial Data Augmentation

-FEF EEERFRE MR (MRI T1vs. T2/FLAIR)AY , Ef5 8 (Mutual Information) A FEREBGNFRR |
AEFERFEEGHBEAELUIEENNAR. -ARETEFIFRWES L (W TR DW)HER ,
A B {5 B sk # < tb(Correlation Ratio) , BEA BB EN TR S FHBER, -NR2ARESWER T
IR, R BRFEIFE) , AUEAMYFIRESSD) & (A— )R XMEX(NCC) EHEER , BAFIER
ERE LEERR,

A differentially private algorithm ensures that its output distribution does not change “too much” when a
single record in the input dataset is altered. Formally, for two datasets differing by exactly one entry, the ratio
of the probabilities of any output is bounded by e€ . The parameter € (often called the privacy budget) controls
how much the output can vary; smaller e means stronger privacy guarantees but typically more noise is added
to protect individuals’ data. MODEL CAP UP, BIAS DOWN, VAR UP

Regularisation penalizes model complexity (using L1, L2, etc.), which reduces variance by preventing
overfitting, though it may increase bias. Tuning the regularisation strength helps balance this trade-off.

GANSs can serve as a learned prior or manifold constraint for inverse problems. The generator produces
images that look realistic, while the discriminator enforces that these images match the true data distribution.
By requiring the reconstruction to both fit the observed data and be judged “real” by the discriminator, the GAN
effectively regularises the solution to lie on the manifold of valid images.

Multi-atlas label propagation Advantages- robust and accurate (like ensembles)= yields plausible
segmentations= fully automatic Disadvantages= computationally expensive = cannot deal well with
abnormalities = not suitable for tumour segmentation
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