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Image Segmentation Noise（噪声）Partial Volume Effects（%分'积)应）Intensity Inhomogeneities
（+,不./）Anisotropic Resolution（各向2性分45）不同轴 spatial resolution differs Imaging 
Artifacts（成9伪;）Non-physiological elements or distortions in an image eg motion artifacts or metal 
artifacts, by equipment or movement. Limited Contrast（对=,受?）不同组织类C物理F性，类C intensity 
Morphological Variability（形态学变2）形态各2 
Segmentation Eval Ground Truth: Reference or standard against method can be compared,e.g. the optimal 
transformation,or true segmentation boundary. usually only available for: Synthetic or simulated phantoms(模
体/N;体),Physical phantom (如凝胶模体，仿造脑等VW结构) 
Gold Standard Expert: 人类观\]手工标注 ▪ Disadvantage: 需要训练&tedious & time-consuming 
Intra-observer Variability: 同观测者不同结果, Inter-observer Variability: 不同观测者不同结果（Disagree） 
▪ Remedy: 多次分k，多个专n分k，Quantify (dis)agree 
Assess performance: Precision/Positive Predictive Value: 𝑃𝑃𝑉: 2$

2$"3$
, random errors, statistical variability, 

the repeatability, or reproducibility of the measurement 
Accuracy(𝐴𝐶𝐶 = 2$"24

$"4
, 𝑃 = 𝑇𝑃 + 𝐹𝑁,𝑁 = 𝑇𝑁 + 𝐹𝑃):  

▪ o一q说s: Acc = t统误w的大小(Bias, trueness) 

▪ o二q说s: Acc = random+systematic  -> high precision and high trueness. 

简单点：���, = �w小 + 随机波动小。𝐹5 =
()"5%)$6
5%$"6

= ()"5%)2$
()"5%)2$"3$"5%34

 
Robustness: ▪ degradation in performance with respect to varying noise levels or other imaging artefacts 
Confusion matrix Conditional Positive/Neg P/N: the number of real pos/neg cases in the data 
▪TP/Hit ; TN/Correct Rejection ; FP/False Alarm/Type I E | FN/Miss/Type II E 
▪Recall/Sensitivity/Hit Rate/TP Rate: 𝑇𝑃𝑅 = 2$

$
= 2$

2$"34
 ▪Specificity/TN Rate: 𝑇𝑁𝑅 = 24

4
= 24

24"3$
 

▪Precision/Pos Pred Val: 𝑃𝑃𝑉 = 2$
2$"3$

    

Overlap Measures: Jaccard Index  (IoU): 𝐽𝐼 = |8∩:|
|8∪:|

 

Dice’s Coefficient: 𝐷𝑆𝐶 = #|8∩:|
|8|"|:|

= #2$
#2$"3$"34

= 𝐹) 
Other measures & Surface Dist. Measure 
▪ Volume similarity: 𝑉𝑆 = $ − <|8|%|:|<

|8|"|:|
= $ − |34%3$|

#2$"3$"34
 

▪ Hausdorff distance: 𝐻𝐷 = maxAℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴)C , ℎ(𝐴, 𝐵) = max
=∈8

min
?∈:

||𝑎 − 𝑏|| 	 

▪ (Symmetric) Average surface distance:𝐴𝑆𝐷 = @(8,:)"@(:,8)
#

, 𝑑(𝐴, 𝐵) = )
4
∑ min

?∈:
||𝑎 − 𝑏||=∈8  

 
Pitfalls in Seg Eval  
 
 
 
 
 
 
 
 
 
 
Segmentation Methods 
▪ Intensity-based (e.g., thresholding 𝝉): 选择 (UL: a lower and upper) 𝜏. ✅: simple, fast, ❌:regions must be 
homogeneous & distinct -difficulty in finding consistent thresholds across images.-leakage, isolated pixels & 
‘rough’ boundaries 
▪ Region-based (e.g., region growing): 从用户选择的 seed ptr生长�域 ✅ relatively fast, yields connected 
region (from a seed point) ❌: ▪ regions must be homogeneous, leakages and ‘rough’ boundaries likely, 
requires (user) input for seed points. 
▪ Atlas-based: majority voting. Seg 对于 𝑁 个标注好的 atlas，register��图片。然后 Fusion。✅ robust and 
accurate (like ensembles), yields plausible segmentations, fully automatic ❌: computationally expensive, 
cannot deal well with abnormalities, not suitable for tumour segmentation.  

  
Multi-scale Process: �加 Pathway处理�采样的图片。 

 
SELF-SUPERVISED LEARNING (SSL) & CONTRASTIVE LEARNING  
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SimCLR (Req Large 𝓑):  ℓ.,D = − log EFG	(IJK(L&,L')/N)

∑ 𝟙[RSJ]EFG	(IJK(L&,L()/N)%)
(*+

 NT-Xent: 𝑠𝑖𝑚(𝑢, 𝑣) = U,V
‖U‖‖V‖

. Low 𝜏  penalise hard 
negatives more (negative pairs wrongly mapped closed to each other).  
Triplet loss: ℓ(𝑥, 𝑥", 𝑥%) = ∑ max	(T, ‖𝑓(𝑥) − 𝑓(𝑥")‖## − ‖𝑓(𝑥) − 𝑓(𝑥%)‖## + 𝜀)B∈X , 𝜀: margin param between 
𝑥", 𝑥%. Linear Probing: Froze Model, Train Head. FT: Train Model+Head. 
BYOL (移除 neg对，¢£ B):  ¤¥正对 emb的 sim→ ¢£需要大 B，更 robust to smaller B than SimCLR。 

 
DINO: 使用 softmax+CE替换 cos sim。Centering替代𝑞0 

创­多个 local view (small crops) & _ global view (big crops). All L & G crops 通过 student，老师只看见 G。 

GENERATIVE APPROACHES TO SELF-SUPERVISED LEARNING; MAE: Loss: 𝑀𝑆𝐸 = ∑A𝑥i. − 𝑥.C# 
CL has some drawbacks: large B sizes, design of the augmentation pipeline etc. 

   
JOINT EMBEDDING PREDICTION (I-JEPA): 训练µ整 Rec·贵。 
Loss: pred patch-level representation 𝑠̂C(𝑖), tgt ptch-lvl rep 𝑠C(𝑖). Loss=𝑙#(𝑠̂, 𝑠) 

 𝐿𝑜𝑠𝑠 = )
Y
∑ 𝐿# m𝑠̂C(𝑖), 𝑠C(𝑖)nY
./) = )

Y
∑ ∑ o𝑠̂C' − 𝑠C'o#

#
.∈:&

Y
./)   

Image Registration 
Images: - 𝑓: 𝑅Z,[,\ → 𝑅). Meta Info: Scale: element spacing (e.g. in mm), Orientation:main axes’s dir, Position: 
image origin.  
Deformations: LowDim Deform Model. Control Point. Finite Element. Dense Displacements field. 
Applications in medical imaging: Multi-modal image fusion, Detection of change, Correction of motion, 
Motion estimation, Segmentation using Registration 
Intensity-based Registration  
Objective/Cost/Energy fx: 𝐶(𝑇) = 𝐷(𝐼 ∘ 𝑇, 𝐽), 𝐼 ∘ 𝑇 moving image, 𝐽:fixed img, Optimisation: 𝑇r = argmin

2
𝐶(𝑇) 

Mono-modal vs Multi-modal: Mono-modal(intensities are related 简单¹º), Multi: (复杂¹º或统计关t) 
(Dis)similarity Measures: Intensity differences: 

Sum of Squared Differences (SSD):𝐷++&(𝐼 ∘ 𝑇, 𝐽) =
)
4
= ∑ m𝐼A𝑇(𝑥.)C − 𝐽(𝑥.)n

#4
.%)  

Sum of Absolute Differences (SAD):𝐷+8&(𝐼 ∘ 𝑇, 𝐽) =
)
4
∑ |𝐼A𝑇(𝑥.)C − 𝐽(𝑥.)|4
./) . Assume: iid 

Correlation Coefficient: 𝐷\\(𝐼 ∘ 𝑇, 𝐽) = − )
4
∑ A𝐼A𝑇(𝑥.)C − 𝜇!CA𝐽(𝑥.) −4
./)

𝜇]C	uv
)
4
∑ A𝐼A𝑇(𝑥.)C − 𝜇!C4
./)

#v )
4
∑ A𝐼A𝑇(𝑥.)C − 𝜇]C4
./)

#w
%)

 

Assumption: linear relationship between intensity distributions 
Intensity distributions: 𝑝(𝑖, 𝑗) = ^(.,D)

4
, N is number of pixels in one image. 𝑝(𝑖) = ∑ 𝑝(𝑖, 𝑗).  

Shannon Entropy: 𝐻(𝐼) = −∑ 𝑝(𝑖)log	(𝑝.).   Joint entropy: 𝐻(𝐼, 𝐽) = −∑ ∑ 𝑝(𝑖, 𝑗) log 𝑝(𝑖, 𝑗)D.  
Mutual information: 𝑀𝐼(𝐼, 𝐽) = 𝐻(𝐼) + 𝐻(𝐽) − 𝐻(𝐼, 𝐽),describes how well one image can be explained by 
another image, can be rewritten in terms of marginal & joint prob 𝑀(𝐼, 𝐽) = ∑ ∑ 𝑝(𝑖, 𝑗) log _(.,D)

_(.)_(D)D. , 

𝐷Y!(𝐼 ∘ 𝑇, 𝐽) = −𝑀𝐼(𝐼 ∘ 𝑇, 𝐽), Normalised MI: 𝑁𝑀𝐼(𝐼, 𝐽) = Z(!)"Z(])
Z(!,])

 is independent of the amount of overlap 
between images. Dissimilarity measure 𝐷4Y!(𝐼 ∘ 𝑇, 𝐽) = −𝑁𝑀𝐼(𝐼 ∘ 𝑇, 𝐽), Assumption: statistical relationship 
between intensity distributions. 
Image Overlap (Dis)similarity measures are evaluated in the overlapping region of the two images. (easily 
have Local Optima). Solve: Successively increase degrees of freedom, Gaussian image pyramids 
Optimisation Strategies: GD,SGD, Downhill-simplex, Bayesian/Discrete/Convex optmz 
Qualitative Eval: Visual assessment 
Quantitative Eval: req GT / surrogate measures 
Evaluation needs to be independent of registration features or cost function! 

  
Causality 
Would my grades have been better had I studied more?, How effective is a treatment in preventing a disease? 
Causality is the relationship between cause and effect. Simpson’s Paradox: Correlations may reverse 
depending on how we aggregate data and its subpopulations 

Predictive Modelling Given an image X, train a model to predict some label Y, 𝑃(𝑌|𝑋) 
Ladder of Causation Activity Questions 
f. Association 
How would seeing X change my belief in Y? 
Modeling correlations 𝑃(𝑌|𝑋) 

Seeing, 
Observing 

“What if I see …? How are the 
variables related? How would 
seeing X change my belief in Y?” 

_.Intervention 
What will Y be if I do X? 
-Use experiments to identify causal effects 
-Crucial for planning and policy making 

Doing, 
Intervening 

What if I do …? How? (What would 
Y be if I do X? How can I make Y 
happen?) 

j.Counterfactual 
What if X had not occurred? 
- Counterfactual reasoning 
- Deduce causes for observed events 

Imagining, 
Retrospectio
n, 
Understandi
ng 

What if X had done …? Why? 
Was it X that caused Y? What if X 
had not occurred? What if I had 
acted differently? 

Structural Causal Models (SCM) is a triple: 𝑀 ≔ ⟨𝑋,𝑈, 𝐹⟩, observed 𝑋 = {𝑥), … , 𝑥4} and unobserved, 𝑈 =
{𝑢), … , 𝑢4}, ▪ causal mechanisms: 𝐹 = {𝑓), … , 𝑓4}, ▪ The value of each variable is a function of its parents (direct 
causes): 𝑥, ≔ 𝑓,(𝑝𝑎,, 𝑢,), 𝑙 = $, … ,𝑁 

 
 

   
Observational Distribution:  
➔ SCMs with jointly independent exogenous noises are Markovian, 如果一个 SCM的À有Â生噪声相Ä独
Æ，那么É该 SCM是Markovian。也Í是说，可Ï把Â生变量的联合分布Õ成各自分布的乘积: 𝑃(𝑢., … , 𝑢4) =
∏ 𝑃(𝑢,)4
,/)   

➔ Markovian SCM induce unique joint observational distribution over the endogenous variables, 在这q模
型里，Ü个Ý生变量只Þ赖自己的áâ父节点，ÀÏ整体的观测分布可Ï用“各变量在给æ其父节点�的è件分
布”的乘积ê示: 𝑃Y(𝑥), … , 𝑥4) = ∏ 𝑃Y(𝑥,|𝑝𝑎,)4

,/) , 其中的áâ父节点（íáâ的î）。➔ Each variable is 
independent of its non-descendants given its direct causes (causal Markov condition), “鉴于其 direct causes，
Ü个变量都ñ其ò后代变量ó关。  
Interventional Distribution: 
➔ SCMs predict the causal effects of actions via interventions, ➔ Interventions answer causal questions like: 
E.g. what would be if we set 𝑥) ≔ 𝑐? ➔Interventions replace one or more of the structural assignments and are 
denoted with the do operator: 𝑑𝑜(𝑥, ≔ 𝑐), 
➔ This induces a submodel 𝑀` and its entailed distribution ô认为 the interventional distribution: 𝑃Y-(𝑋|𝑑𝑜(𝑐)) 

➔ 这样做ø替换掉原先的结构ü程，让t统变成一个�的子模型𝑀\; 我们Í#计算干预后的'5分布: 
𝑃Y-A𝑋�𝑑𝑜(𝑐)C	 
Counterfactuals: 
➔ SCMs can consider hypothetical scenarios: Given that we observed (𝑥), 𝑥#), what would 𝑥#have been had 
𝑥)been c? All else being equal, would I have been late had I not missed the train? 
➔ Counterfactual inference involves three steps: f. Abduction: Update 𝑃(𝑈)	given observed evidence, i.e. 
infer 𝑃(𝑈|𝑋) 
_. Action: Intervene by e.g. 𝑑𝑜(𝑥,� ≔ 𝑐) and obtain the submodel 𝑀`, j. Prediction: Use ⟨𝑀\ , 𝑃(𝑈|𝑋)⟩ to 
compute counterfactuals. 
Example: Computing Counterfactuals 𝒙𝟏 ≔ 𝒇𝟏(𝒖𝟏) = 𝟏 + 𝒖𝟏, 𝒙𝟐 ≔ 𝒇𝟐(𝒙𝟏, 𝒖𝟐) = 𝟑𝒙𝟏 + 𝒖𝟐 
Q: Given we observed , what would have been had been k? 
\. Abduction: 𝑥) ≔ � = $ + 𝑢) ⇒ 𝑢) = $, 𝑥# ≔ � = � ⋅ � + 𝑢# ⇒ 𝑢# = −� 
]. Action: 𝑥)� ≔ �, ^.Prediction: 𝒙�# = �	𝑥)� + 𝑢# = � ⋅ � − � = $� 
Deep Structural Causal Models 
➔ Leverage deep generative models to learn SCM mechanisms: 𝑥, ≔ 𝑓,(𝑝𝑎,, 𝑢,) 
➔ Tractably estimate causal effects of interventions and perform counterfactual inference, i.e. answer “what 
if…?” type questions 
➔ Abduction is challenging in complex problems, e.g. medical imaging. 
Morpho-MNIST, Brain Imaging,Chest X-ray Imaging 
Evaluating Counterfactuals: Axiomatic Properties (理),来评估-事实0理 
➔ Soundness TheoremÀ有î果模型中,composition,effectiveness,reversibility这 jq性质是必需的。 
➔ Completeness Theorem这三q性质也是4分的。 
➔ We can measure Counterfactual Soundness using these axiomatic properties 
 
Conv Shape:𝑜 = !"#$%&((%))%)

+
+ $, Receptive field: 𝑅, = 𝑅,%) + 𝐷𝑖𝑎,(𝐾- − $) × Π./),%)𝑆., 



  

 
Conclusion & Outlook 
➔ It is crucial to account for the data-generating process and causality in our modelling to avoid biased 
predictions  
➔ Deep SCMs can generate plausible high-fidelity image counterfactuals  
➔ Latent mediator models enable estimation of direct, indirect and total causal effects for high-dimensional 
variables Limitations: - Only consider Markovian SCMs; although Markovianity is a common assumption in 
causality literature, it is strong in most cases - Measuring counterfactual effectiveness relies on separately 
trained classifiers 
Inverse Problem：𝑦 = 𝐴𝑥 + 𝑛, Goal: Recover x from y. Inpainting • Deblurring • Denoising • Super-resolution  
• Image Reconstruction (Medical imaging). X:原图, Y：观测�的图片 

Example deblurring: Least Squares: argmin
B

𝐷(𝐴𝑥, 𝑦) , 𝐷(𝐴𝑥, 𝑦) = )
#
‖𝐴𝑥 − 𝑦‖## 

Least Squares Sol: 𝑥i = (𝐴2𝐴)%)𝐴2𝑦, Regularisation: argmin
B
𝐷(𝐴𝑥, 𝑦) + 𝜆𝑅(𝑥), 𝑅(𝑥) = )

#
‖𝑥‖## 

Wth Tikhonov regularisation:𝑥i = (𝐴2𝐴 + 𝜆𝐼)%)𝐴2𝑦, Better conditioned (and noise suppression) 
Data Consistency term: 𝐷(𝐴𝑥, 𝑦), Regularisation term (encoding prior knowledge on x): 𝑅(𝑥), Pram 𝜆 

Common Regularisers: 𝑅(𝑥), Tikhonov: ‖∇𝑥‖##,Total variation:‖∇𝑥‖#,) = ∑ vm∑ A|∇𝑥|.@C
#

@ n	c
./d , Wavelet ‖Ψ𝑥‖ 

Regularisation in inverse problems: 𝑦 → argmin
B
𝐷(𝐴𝑥, 𝑦) + 𝜆𝑅(𝑥) → 𝑥�, Instead of choosing ℛ a-priori based 

on asimple (geometric or other) model of image, learn ℛ from training data. 
Solving Inverse Problems with Deep Learning 
Model agnostic (ignores forward model): 𝑥 → [𝐵𝑙𝑢𝑟𝑟𝑖𝑛𝑔] → [𝐷𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔] → 𝑦 → 𝑁𝑁(𝑦) → 𝑥 
(partly) model agnostic: 𝑥 → [𝐵𝑙𝑢𝑟𝑟𝑖𝑛𝑔] → [𝐷𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔] → 𝑦 → 𝐹�%) → 𝑁𝑁(𝑦�) → 𝑥, 𝐹�%): Up-sample using 
(linear, cubic) interpolation Proximal GD 𝒛𝒌 = 𝒙� + 𝜼𝑨fA𝒚 − 𝑨𝒙�(,)C. 
Deep proximal gradient  Decoupled (First learn, then reconstruct) ->                                -> Perceptual loss 
Unrolled 
Optimisation-> 
Problem  
Formulation: 
 
 
 
- Upsample (LR) image to high-resolution (HR/SR) image, -Forward model (going from high- to low-resolution) 
is straightforward and involves some image degradation followed by downsampling. -Inverse model: e.g. 
interpolation-based models 
Super-Resolution framework: Post-upsampling SR • Directly upsamples LR image into SR• Requires 
learnable upsampling layers• Advantages: – Fast and low memory requirements• Disadvantages: – Network 
has to learn entire upsampling pipeline – Network typically limited to a specific up-sampling factor 𝑦 → 𝑛 ∗
𝑐𝑜𝑛𝑣 → 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 → 𝑥� 
Pre-upsampling SR: Two stage process: f 先上采样(e.g. linear interpolation) _. refining upsampled 用 DNN 
(usually a CNN). • ADV:– Upsampling operation is performed using interpolation, then correct smaller details– 
Can be applied to a range of upscaling factors and image sizes 
• DISADV: – Operates on SR image, thus requires 更多计算和Ý存𝑦 → 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 → 𝑦U_ → 𝑛 ∗ 𝑐𝑜𝑛𝑣 → 𝑥� 
Progressive upsampling SR: Multi-stage process: Use a cascade of CNNs to progressively reconstruct 
higher-resolution images.– At each stage, the images are upsampled to higher resolution and refined by 
CNNs• ADV:– Decomposes complex task into simple tasks – Reasonable efficiency DISADV: difficult to train 
very deep models 𝑦 → 𝑚 ∗ [𝑛 ∗ 𝑐𝑜𝑛𝑣 → 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒] → 𝑥� 
Iterative up-and-down sampling SR: • Approach:– Alternate between upsampling and downsampling (back-
projection) operations – Mutually connected up- and down-sampling stages. • ADV:– Has shown superior 
performance as it allows error feedback– Easier training of deep networks. 𝑦 → 𝑐𝑜𝑛𝑣 → 𝑛 ∗
(𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 + 𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) → 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 → 𝑥� 
How to implement upsampling? 
𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟: 𝛼 = B%B+

B%%B+
, 𝛽 = C%C+

C%%C+
𝑓(𝑥, 𝑦) = ($ − 𝛼)($ − 𝛽)𝐼(𝑥), 𝑦)) + 𝛼($ − 𝛽)𝐼(𝑥#, 𝑦)) + ($ − 𝛼)𝛽𝐼(𝑥), 𝑦#) + 𝛼𝛽𝐼(𝑥#, 𝑦#) 

Loss functions for SR: Pixel-wise loss function (either Lf or L_): 𝐿_ =
)
4
∑ |𝑥. − 𝑥g�|_4
./)  

Alternative: Huber loss function: 𝐿_ =
)
4
∑ 𝑑(𝑥. − 𝑥g�)4
./) , 𝑑(𝑎) = T.�𝑎#		if		|𝑎| ≤ $		otherwise	|𝑎| − T.� 

Perceptual loss: Computes loss on the output 𝜃 of an intermediate layer l of a pre-trained network 

Total variation: 𝐿 = )
4
∑ v∑ A|∇𝑥|.@C

#
@

4
./) , Assumption: Absolute value of gradient of the image is low, e.g. 

image is piecewise constant. GAN LOSS: min
h
max
&

𝐸B∼_./0/(B)[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸L∼_1(L)[log	($ − 𝐷A𝐺(𝑧)C)] 
Aim: To detect: – Which images are (real) high-resolution?          R(x)=n if x on image manifold, otherwise infty 
• Use discriminator output as loss function: 𝐿 = −𝑙𝑜𝑔𝐷(𝐺(𝐼j6)).   R(x)=n if x in range(G) otherwise infty 
Parameterizing images via generative networks 
• Consider a generator network 𝛹 with a fixed input 𝑧d) 
• The network parameters 𝑤 can ô认为 a parameterization of Images 𝑤 → 𝑥 = 𝛹(𝑧d; 𝑤), 𝑧d → 𝑉𝐴𝐸k+,k%,…,k2 →
𝑥, optimization problem: min

k
‖𝑥 − Ψ(zd; w)‖#	 

Deep Image Prior: 对于大多º生成网络 fitting naturally looking images is easier/faster than fitting others 

DIP: Application to inpainting: For inpainting we only reconstruct the visible pixels, implicitly inferring the 
pixels that are masked out by mask m: 𝑚𝑖𝑛k	´𝑚⨀A𝑥 − Ψ(zd; w)C´

# 
X-ray computed tomography (CT): H contrast – H spatial resolution – fast acquisition – but ionising radiation 
Magnetic Resonance (MR):H contrast –H spatial res –no ionising radiation –but slow acquisition process 
Cost Function Synonym: Loss function, error function, similarity measure • Quantifies how well the model 
prediction matches targets • Needs to be selected according to the underlying task • Is optimized during 
training → needs to be differentiable! Eg: MSE 
Training Phase Learning model: 𝒚� = 𝒇𝜽(𝒙𝒏)	, • The parameters 𝜃 of the mapping function 𝑓0	are optimized 
under a cost function 
• The cost function quantifies how well :	𝒚� = 𝒇𝜽(𝒙𝒏)	 is predicted given 𝑥c, The parameters 𝜃 by minimizing the 
cost function ℒ with learning rate 𝜏: 𝜃,") = 𝜃, − 𝜏 @j

@0
|0/0( Testing Phase (Inference): • Apply 𝑓0using the 

optimized 𝜃 to the test set. Generalization: Ability to correctly predict unseen examples 
Trustworthy AI/ML AI/ML: The need for data 
• The power and effectiveness of AI/ML is critically dependent on the data that is used to train our AI/ML 
models. – Quality of the data is one of the important aspects that determines the effectiveness of AI/ML 
models: • Curation of the data (and the associated annotations) • Representativeness of the data (avoiding 
bias) – Quantity of data • In general, the more data is available for training, the more accurate and robust the 
resulting AI/ML models become. – Data sharing is more important, not only for training AI/ML models but also 
for evaluating solutions in multi-institutional/multi-national trials 
What are the hurdles:碍 to getting more data? Human and societal challenges:Cost and effort for 
collecting and annotating data – Incentives for data sharing (money, fame, other benefits) Technical 
challenges– Data quality– Data annotation– Data exchange formats Legal challenges: What is allowed? 
What consent is required? Regulation (e.g. GDPR) Privacy challenges –Ethical –Trust (risks such as privacy 
breaches, data leaks and re-identification) 
Secure and privacy-preserving ML: • Optimal privacy preservation requires implementations that are secure 
by default so-called privacy by design • Requirements: – Minimal or no data transfer Federated learning: 
train a ML model across decentralized clients with local data, without exchanging them – Provision of 
theoretical and/or technical guarantees of privacy Differential privacy: perturb the data so that information 
about the single individual is reduced while retaining the capability of learning 
Federated Learning f. Model sent to each client for training on local data _. Local model updates encrypted 
and sent back to server for aggregation j. Aggregated model sent back to local client and model owner 
(server) p. Back to f 
In federated learning: • Suppose N training samples are distributed to 𝑲 clients, 𝑷𝒌 is the set of indices 
of samples at client k, and 𝒏𝒌 = |𝑷𝒌|: 𝑳(𝜽) = ∑ 𝒏𝒌

𝑵
𝑲
𝒌/𝟏 𝑳𝑲(𝜽)	, 𝑳𝑲(𝜽) =

𝟏
𝒏𝒌
∑ 𝑳(𝒙𝒊, 𝒚𝒊, 𝜽)𝒊∈𝑷𝒌 , 𝑬𝒑𝒌[𝑳𝑲] =

𝑳	(𝒊𝒊𝒅), , 𝑬𝒑𝒌[𝑳𝑲] ≠ 𝑳	(𝒏𝒐𝒏 − 𝒊𝒊𝒅),		 
• Suppose a C fraction of clients are selected at each round: C = f: full-batch (non-stochastic) gradient descent 
C < f: stochastic gradient descent (SGD)  
Federated SGD:   Loop 𝑪𝒍𝒊𝒆𝒏𝒕: 𝛁ℒ𝒌(𝜽) → 𝑺𝒆𝒓𝒗𝒆𝒓:	𝜽𝒌

𝒋"𝟏 = 𝜽𝒌
𝒋 + 𝜼∑ 𝒏𝒌

𝑵
𝛁ℒ𝒌(𝜽)𝑲

𝒌/𝟏  
Federated Averaging: • First, model is randomly initialized on the central server 
• For each round t: – A random set of clients are chosen; – Each client performs local GD steps – The server 
aggregates model parameters submitted by the clients 𝜃,

D") = ∑ c(
4
𝜃,
D")(

,/)  
Challenges for federated learning 
• Non-IID data – Training data for a given client is typically site specific, hence the site’s local dataset will not 
be representative of the distribution of training samples. 
• Unbalanced data – Sites may have a lot or little training data, leading to varying amount of local training 
data across different sites. 
• Massively distributed data – There may be extreme scenarios where each site only has very training 
samples (in the limiting case one example) 
• Communication costs–Communication between clients and servers occurs communication overheads. The 
amount of overhead will depend on the number of clients and the frequency of updates from/to server. 
• Privacy protection – No formal security/privacy provided – Prone to adversarial influence (server or client) 
• Federated learning addresses the data sharing problems from the position of data governance; it allow the 
data owner to choose who is the direct consumer of their data 
现有 privacy-preserving üs 

k-anonymity • Idea: 如果 ID =漏，不应该连â� individuals Example: [id,John,Male,-./0,+ve] -> [id,Male,-./7--.07,+ve] 
Adversarial priors: assume the attacker has no other information about the targets, not real 
Homomorphic Encryption: Example Alice encrypts two values 𝑥 and 𝑦 and sends them to Bob, who adds 
the encrypted values (via “homomorphic addition”) to produce an encrypted sum. When Alice receives it back, 
she decrypts to get x+y. Bob never sees the plaintext x or y. This way, data remains private throughout the 
entire computation. 
Secure multi-party computation: • The individual contributions are ‘sharded’ and only the individual shards 
are shared with the participants • If and only if they are all combined together, the final result is revealed • But 
not the individual parts 
• Confidentiality: neither knows the real value• Shared Governance: The value can only be disclosed if 
everyone agrees 
Example Compute average score of exam 
Differential Privacy Randomized responses • Enables draw statistical conclusion from datasets without 
revealing information about individual data points. • Realised by adding a controlled amount of noise • 
Differential privacy formalizes how we define, measure and track the privacy protection afforded to individual 
as functions of factors like randomization probabilities and number of times surveyed. 
ℙ[𝐴(𝐷)) = 𝑂] ≤ 𝑒uℙ[𝐴(𝐷#) = 𝑂]，D),#w一个个体的 DB。A算s。O是输A。ε隐C预算Dº 
Concrete attack example: Gradient-based model inversionf. The adversary randomly generates an image-
gradient pair _. The adversary captures the gradient update submitted by the victim j. Using a suitable cost 
function (often cosine similarity), the adversary minimises the difference between the captured and the 
generated updates by perturbing the image they control p. The algorithm is repeated until the final iteration is 
reached. 
DP-SGD:(f). Compute gradients for each individual sample (they represent independent clients) (_). Clip the 
calculated gradients to obtain a known sensitivity (j). Add the noise scaled by the sensitivity from step _ (p). 
Perform the gradient descent step 
Interpretability and Explainability Why Important: – Complexity and prevalence! – Safety and robustness is 
critical – Generating knowledge • Debugging machine learning models: Data during deployment has noise 
• To use machine learning responsibly we need to ensure that – Our values are aligned – Our knowledge is 
reflected 
Interpretability: Common Misunderstandings 
•Simple ML models (e.g. linear models or decision trees are interpretable) 

• Trust, fairness and interpretability are all the same thing – Interpretability can help to formalize concepts such 
as fairness or trust– Once formalized it may not be need anymore 
How can we interpret an existing ML model? • Ablation test: How important is a data point or feature? – Train 
without certain data or features and observe/study the impact – Difficult and expensive • Fit functions (use first 
derivatives) – Sensitivity analysis – Saliency maps• Visualization and attribution: – Identify input features 
responsible for model decision • Direct visualization of filters - Easy to implement - Limited practical value – 
First layers are easy to interpret (mostly low-level features) – Higher layers are more difficult to interpret (non-
interpretable features) 
• Problem: Visualization of filters has limited value • Solution: Instead visualize activations generated by 
kernels – Strong response: Feature is present – Weak response: Feature is not present – Easy to implement – 
Easy to interpret for early layers – Higher layers are more sparse – Channels may correspond to specific 
features 
How can we interpret an existing ML model? Occlusions • Idea: Mask out region in the input image and 
observe network output • If masked out region causes a significant drop in confidence, the masked-out region 
is important  
Saliency maps DeconvNet 是一q可视¥ CNN Ý%F征的技术，用来回答“模型KL学�了什么”。O体做s
是：f.选æ网络某一层的R活（例如只保V一个通道的R活，其他通道YZ），_.-转网络：向后“传]”这些R
活，通过“unpooling” 重现原先的`间结构，同时c据池¥时记录的“开关”iY（max locations），jF征图逐l
还原回输n`间。这样ó需重�训练网络，只需要一个几乎ñ普通-向传]相同的过程（主要在 ReLU 处理上
s有w2），í可重­模型在该通道R活�对应的输n图9模式。由此我们#得�一个可视¥的“显著图”
（saliency map），帮助理| CNN 哪些9~F征�发了Fæ的R活。 
• Question:– Which pixels are most significant to a neuron?– How would they need to change to most affect 
the activation of the neuron?• Solution:– Use back propagation but differentiate activation with respect to 
input pixels, not weights 

  
DeepDream / Inceptionism: • Attempt to understand the inner workings of the network • Optimize with 
respect to image • Idea – Arbitrary image or noise as input – Instead of adjusting network parameters, tweak 
image towards high “X” where “X” can be • Neuron/Activation map/Layer • Logits/Class probability – Search for 
images that are “interesting” – Different layers enhance different features• Algorithm – Forward propagate to 
layer n – No minimization of loss. Instead maximize L_ norm of activations of a particular NN layer – 
Backpropagate to input layer • Resulting image will show learned features 
Robustness: Adversarial Methods Example kr% cofidence + n.nnr noise = “gibbon”(tt% confidence) 
Adversarial attacks – Perturbation: Assume a linear classifier: 𝜃2𝑥• We can think of an adversarial example 
that contains a small, nonperceivable perturbation to the input. Let’s denote the perturbation as 𝜂: 𝑥� = 𝒙 + 𝜼	 • 
Then, the logits of the classifier would be 𝜃2 = 𝜃2(𝑥 + 𝜂	) = 𝜃2𝑥 + 𝜃2𝜂 • Given a small perturbation 𝜂, the 
effect of the perturbation on the logits of the classifier is given by 𝜃2𝜂.  
• Idea: – Find a 𝜂 that causes a change that is non-perceivable and ostensibly innocuous to the human eye, 
yet destructive and adverse enough for the classifier to the extent that its predictions are no longer accurate. – 
An adversarial example is one that which maximizes the value of 𝜃2𝜂 to sway the model into making a wrong 
prediction 
• Problem: – Need a constraint on 𝜂; otherwise, one could just apply a large perturbation to the input • 
Solution: – Apply a constraint such that ‖𝜂‖v ≤ 𝜖, • Assume a perturbation: 𝜂 = 𝜖 ⋅ 𝑠𝑖𝑔𝑛(𝜃) • What are the 
bounds of this perturbation? 𝜂 = 𝜖 ⋅ 𝑠𝑖𝑔𝑛(𝜃) = 𝜃f𝜂 = 𝜖 ⋅ 𝜃f𝑠𝑖𝑔𝑛(𝜃) = 𝜖‖𝜃‖) = 𝜖𝑚𝑛, 𝑚: avg magnitude of an 
element of 𝜃 • This means that the change in activation given by the perturbation increases linearly with 
respect to n (or the dimensionality). • If n is large, one can expect even a small perturbation capped at 𝜖 to 
produce a perturbation big enough to render the model susceptible to an adversarial attack. • Remember that 
for images n = no. of pixels • Such perturbed examples as referred to as adversarial examples 
Adversarial attacks - Fast Gradient Sign Method 
Key idea: • Perform GD in order to max the loss (the goal of adversarial attack). • Consider the input image x  
to be a trainable parameter and compute the gradient with respect to the input image to create a perturbation. 
𝜂 = 𝜖 ⋅ 𝑠𝑖𝑔𝑛(∇B𝐿(𝜃, 𝑥, 𝑦)) 
• An adversarial example can be created as: 𝑥� = 𝑥 + 𝜖 ⋅ 𝑠𝑖𝑔𝑛(∇B𝐿(𝜃, 𝑥, 𝑦))  
How can you use adversarial attacks? f. Generate adversarial examples _. Add the generated adversarial 
examples to the training set 
j. Retrain model using training set.  Adversarial Data Augmentation 
-不同对=,或不同加权(MRI Tf vs. T_/FLAIR)时，Ä�息(Mutual Information) 常ô用于,量图9对齐)果，î
为�不要求两幅图9的+,O有线性或固æ对应关t。-同样是不同�列/不同物理�义(如 Tf和 DWI)的图9，
可使用Ä�息或相关=(Correlation Ratio)，î为�们#够�应不同分布的+,值。-如果是相同模态(如同是 Tf

加权，或仅做轻��,调整)，可Ï使用如.ü误w(SSD) 或 (归一¥)��相关(NCC) 等简单,量，î为两幅图
在+,上áâ对应。 
A differentially private algorithm ensures that its output distribution does not change “too much” when a 
single record in the input dataset is altered. Formally, for two datasets differing by exactly one entry, the ratio 
of the probabilities of any output is bounded by 𝑒w . The parameter 𝜖 (often called the privacy budget) controls 
how much the output can vary; smaller ϵ means stronger privacy guarantees but typically more noise is added 
to protect individuals’ data. MODEL CAP UP, BIAS DOWN, VAR UP 
Regularisation penalizes model complexity (using Lf, L_, etc.), which reduces variance by preventing 
overfitting, though it may increase bias. Tuning the regularisation strength helps balance this trade-off. 
GANs can serve as a learned prior or manifold constraint for inverse problems. The generator produces 
images that look realistic, while the discriminator enforces that these images match the true data distribution. 
By requiring the reconstruction to both fit the observed data and be judged “real” by the discriminator, the GAN 
effectively regularises the solution to lie on the manifold of valid images. 
Multi-atlas label propagation Advantages▪ robust and accurate (like ensembles)▪ yields plausible 
segmentations▪ fully automatic Disadvantages▪ computationally expensive ▪ cannot deal well with 
abnormalities ▪ not suitable for tumour segmentation 


